DOI QR코드

DOI QR Code

Optical Coherence Tomography Based on a Continuous-wave Supercontinuum Seeded by Erbium-doped Fiber's Amplified Spontaneous Emission

  • Lee, Ju-Han (School of Electrical and Computer Engineering, University of Seoul) ;
  • Jung, Eun-Joo (Nano-Photonics Research Center, Korea Photonics Technology Institute) ;
  • Kim, Chang-Seok (Department of Cogno Mechatronics Engineering, Pusan National University)
  • Received : 2009.11.16
  • Accepted : 2010.02.18
  • Published : 2010.03.25

Abstract

In this study, the use of a continuous-wave (CW) supercontinuum (SC) seeded by an erbium-doped fiber's amplified spontaneous emission (ASE) for optical-coherence tomography imaging is experimentally demonstrated. It was shown, by taking an in-depth image of a human tooth sample, that due to the smooth, flat spectrum and long-term stability of the proposed CW SC, it can be readily applied to the spectral-domain optical-coherence tomography system. The relative-intensity noise level and spectral bandwidth of the CW SC are also experimentally analyzed as a function of the ASE beam power.

Keywords

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  2. E. J. Jung, J. S. Park, M. Y. Jeong, C. S. Kim, T. J. Eom, B. A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrallysampled OCT for sensitivity improvement from limited optical power,” Opt. Exp. 16, 17457-17467 (2008). https://doi.org/10.1364/OE.16.017457
  3. J. H. Kim and B. H. Lee, “Murine heart wall imaging with optical coherence tomography,” J. Opt. Soc. Korea 10, 42-47 (2006). https://doi.org/10.3807/JOSK.2006.10.1.042
  4. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 ${\mu}m$ using Er and Tm-doped fiber sources,” J. Biomed. Opt. 3, 76-79 (1998). https://doi.org/10.1117/1.429898
  5. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 ${\mu}m$,” Opt. Lett. 29, 2846-2848 (2004). https://doi.org/10.1364/OL.29.002846
  6. P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” IEEE J. Lightwave Technol. 23, 13-18 (2005). https://doi.org/10.1109/JLT.2004.840361
  7. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003). https://doi.org/10.1103/PhysRevLett.90.113904
  8. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compat femtosecond Nd:Glass laser and nonlinear fiber,” Opt. Exp. 11, 3290-3297 (2003). https://doi.org/10.1364/OE.11.003290
  9. Y. Wang, I. Tomov, J. S. Nelson, Z. Chen, H. Lim, and F. Wise, “Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography,” J. Opt. Soc. Am. A 22, 1492-1499 (2005). https://doi.org/10.1364/JOSAA.22.001492
  10. S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density light source for fiber sensing purposes,” Meas. Sci. Technol. 17, 1014-1019 (2006). https://doi.org/10.1088/0957-0233/17/5/S13
  11. M. Prabhu, N. S. Kim, and K. Ueda, “Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser,” Jpn. J. Appl. Phys. 39, L291-L293 (2000). https://doi.org/10.1143/JJAP.39.L291
  12. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuouswave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353-1355 (2003). https://doi.org/10.1364/OL.28.001353
  13. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Exp. 13, 6912-6918 (2005). https://doi.org/10.1364/OPEX.13.006912
  14. A. K. Abeeluck, C. Headley, and C. G. Jorgensen, “Highpower supercontinuum generation in highly nonlinear dispersion- shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29, 2163-2165 (2004). https://doi.org/10.1364/OL.29.002163
  15. J. H. Lee, Y. Takushima, and K. Kikuchi, “Continuouswave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber,” Opt. Lett. 30, 2599-2602 (2005). https://doi.org/10.1364/OL.30.002599
  16. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave pumped continumm generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706-2708 (2004). https://doi.org/10.1063/1.1801175
  17. J. H. Lee, Y.-G. Han, and S. B. Lee, “Experimental study on seed light source coherence dependence of continuouswave supercontinuum performance,” Opt. Exp. 14, 3443-3452 (2006). https://doi.org/10.1364/OE.14.003443
  18. A. K. Abeeluck and C. Headley, “Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,” Appl. Phys. Lett. 85, 4863-4865 (2004). https://doi.org/10.1063/1.1818332
  19. P. A. Champert, V. Couderc, and A. Barthelemy, “1.5-2.0 ${\mu}m$ multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source,” IEEE Photon. Technol. Lett. 16, 2445-2447 (2004). https://doi.org/10.1109/LPT.2004.834924
  20. P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Exp. 12, 5287-5295 (2004). https://doi.org/10.1364/OPEX.12.005287
  21. C. S. Kim and J. U. Kang, “Multi-wavelength switching of Raman fiber ring laser incorporating composite PMF Lyot-Sagnac filter,” Appl. Opt. 43, 3151-3157 (2004). https://doi.org/10.1364/AO.43.003151
  22. J. H. Lee, Y.-M. Chang, Y.-G. Han, S. B. Lee, and H. Chung, “Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous wave, incoherent supercontinuum source,” Appl. Opt. 46, 5158-5167 (2007). https://doi.org/10.1364/AO.46.005158
  23. J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength division multiplexed passive optical network architecture with C-band OLT, L-band ONU, and U-band monitoring,” IEEE J. Lightwave Technol. 26, 2891-2897 (2007).
  24. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 ${\mu}m$,” Opt. Lett. 29, 2846-2848 (2004). https://doi.org/10.1364/OL.29.002846
  25. D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE 5690, 101-113 (2005). https://doi.org/10.1117/12.592544
  26. A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235 (2004). https://doi.org/10.1088/0031-9155/49/7/011
  27. U. Sharma, E. W. Chang, and S. H. Yun, “Long wavelength optical coherence tomography at 1.7 ${\mu}m$ for enhanced imaging depth,” Opt. Exp. 16, 19712-19723 (2008). https://doi.org/10.1364/OE.16.019712
  28. D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt. 34, 1278-1285 (1995). https://doi.org/10.1364/AO.34.001278
  29. S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Exp. 15, 15129-15146 (2007). https://doi.org/10.1364/OE.15.015129
  30. J. S. Lee, C. H. Chung, and D. J. Digiovanni, “Spectrumsliced fiber amplifier light source for multi-channel WDM application,” IEEE. Photon. Technol. Lett. 5, 1458-1461 (1998).
  31. C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” IEEE J. Lightwave Technol. 19, 1140-1148 (2001). https://doi.org/10.1109/50.939794
  32. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Select. Topics Quantum Electron. 7, 328-333 (2001). https://doi.org/10.1109/2944.954146
  33. H. S. Lee, E. J. Jung, M. Y. Jeong, and C. S. Kim, “Broadband wavelength-swept Raman laser for Fourier-domain mode locked swept-source OCT,” J. Opt. Soc. Korea 13, 316-320 (2009). https://doi.org/10.3807/JOSK.2009.13.3.316
  34. D. D. D. Fonseca, B. B. C. Kyoyoku, A. M. A. Maia, and A. S. L. Gomes, “In vitro imaging of remaining dentin and pulp chamber by optical coherence tomography: comparison between 850 and 1280 nm,” J. Biomed. Opt. 14, 024009-1~024009-5 (2009). https://doi.org/10.1117/1.3103584
  35. V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, M. Yamanari, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “In-vivo three dimensional Fourier-domain optical coherence tomography for soft and hard oral tissue measurements,” in Proc. Biomedical Optics Topical Meeting (BIOMED) (Fort Lauderdale, FL, USA, Mar. 2006), paper WE3.
  36. F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, and D. H. Reitze, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Exp. 3, 239-250 (1998). https://doi.org/10.1364/OE.3.000239
  37. S. S. Manesh, C. L. Darling, and D. Fried, “Polarizationsensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14, 044002-1~044002-6 (2009). https://doi.org/10.1117/1.3158995

Cited by

  1. Post-tuning of Sample Position in Common-path Swept-source Optical Coherence Tomography vol.15, pp.4, 2011, https://doi.org/10.3807/JOSK.2011.15.4.380
  2. Broadband Supercontinuum Generation Based on Ytterbium-Doped Fiber Amplifier Seeded by Self-Pulsed Amplified Spontaneous Emission Source vol.33, pp.9, 2015, https://doi.org/10.1109/JLT.2015.2399352
  3. Characterization of variable reflectivity of a polarization-maintaining fiber Sagnac mirror for long-distance remote fiber Bragg gratings cavity sensors vol.21, pp.11, 2010, https://doi.org/10.1088/0957-0233/21/11/115303
  4. Simultaneous Second Harmonic Generation of Multiple Wavelength Laser Outputs for Medical Sensing vol.11, pp.12, 2011, https://doi.org/10.3390/s110606125
  5. All-fiber spectral-domain optical coherence tomography with high resolution by using a PCF-based broadband coupler and a k-domain linearization method vol.61, pp.9, 2012, https://doi.org/10.3938/jkps.61.1485
  6. Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source vol.18, pp.3, 2012, https://doi.org/10.1109/JSTQE.2011.2167962
  7. Half mJ Supercontinuum Generation in a Telecommunication Multimode Fiber by a Q-switched Tm, Ho:YVO4Laser vol.19, pp.1, 2015, https://doi.org/10.3807/JOSK.2015.19.1.007
  8. High-Power Ultraflat Near-Infrared Supercontinuum Generation Pumped by a Continuous Amplified Spontaneous Emission Source vol.7, pp.2, 2015, https://doi.org/10.1109/JPHOT.2015.2416122
  9. Double common-path interferometer for flexible optical probe of optical coherence tomography vol.20, pp.2, 2012, https://doi.org/10.1364/OE.20.001102