• Title/Summary/Keyword: Operator stability

Search Result 170, Processing Time 0.023 seconds

Stability Criterion for Volterra Type Delay Difference Equations Including a Generalized Difference Operator

  • Gevgesoglu, Murat;Bolat, Yasar
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.163-175
    • /
    • 2020
  • The stability of a class of Volterra-type difference equations that include a generalized difference operator ∆a is investigated using Krasnoselskii's fixed point theorem and some results are obtained. In addition, some examples are given to illustrate our theoretical results.

An investigation into the motion and stability behaviour of a RO-RO vessel

  • Mohan, Poonam;Shashikala, A.P.
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.157-177
    • /
    • 2019
  • Studies on motion response of a vessel is of great interest to researchers, since a long time. But intensive researches on stability of vessel during motion under dynamic conditions are few. A numerical model of vessel is developed and responses are analyzed in head, beam and quartering sea conditions. Variation of response amplitude operator (RAO) of vessel based on Strip Theory for different wave heights is plotted. Validation of results was done experimentally and numerical results was considered to obtain effect of damping on vessel stability. A scale model ratio of 1:125 was used which is suitable for dimensions of wave flume at National Institute of Technology Calicut. Stability chart are developed based on Mathieu's equation of stability. Ince-Strutt chart developed can help to capture variations of stability with damping.

STRONG CONVERGENCE AND ALMOST STABILITY OF ISHIKAWA ITERATIVE SCHEMES WITH ERRORS IN BANACH SPACES

  • Zeqing Liu;Kim, Jong-Kyu;Park, Hye-Kyeong
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.261-275
    • /
    • 2002
  • Let T be a local strongly accretive operator from a real uniformly smooth Banach space X into itself. It is proved that Ishikawa iterative schemes with errors converge strongly to a unique solution of the equations T$\_$x/ = f and x + T$\_$x/ = f, respectively, and are almost T$\_$b/-stable. The related results deal with the strong convergence and almost T$\_$b/-stability of Ishikawa iterative schemes with errors for local strongly pseudocontractive operators.

Visual Servo Control of Slender Manipulators Using an Approximate Jacobian Operator (근사 자코비안 연산자를 이용한 경량 매니퓰레이터의 시각 서보 제어)

  • Lee, Ho-Gil;Kim, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1086-1092
    • /
    • 2000
  • To realize a visual servo control of slender manipulators, two problems to be solved are analysed. The stability problem on so-called noncolocation control and the infinite order problem of the real Jacobian matrix caused by the elastic deformation are discussed. By considering the dynamic relations between rigid and elastic modes, a Jacobian operator is derived and the physical meaning is also explained. Then, for practical control, a simple control scheme using an approximate Jacobian is proposed and its stable conditions are proven by means of the $L_$2$ stability theory. The scheme is structurally similar to the conventional PD control laws, but external sensors(e. g. visual sensor) are used for positioning and internal sensors for damping. A good performance is obtained via control experiments of a slender two link manipulator.

  • PDF

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.

A HYBRID PROXIMAL POINT ALGORITHM AND STABILITY FOR SET-VALUED MIXED VARIATIONAL INCLUSIONS INVOLVING (A, ${\eta}$)-ACCRETIVE MAPPINGS

  • Kim, Jong-Kyu;Li, Hong Gang
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.703-714
    • /
    • 2010
  • A new class of nonlinear set-valued mixed variational inclusions involving (A, ${\eta}$)-accretive mappings in Banach spaces is introduced and studied, which includes many kind of variational inclusion (inequality) and complementarity problems as special cases. By using the resolvent operator associated with (A, ${\eta}$)-accretive operator due to Lan-Cho-Verma, the existence of solution for this kind of variational inclusion is proved, and a new hybrid proximal point algorithm is established and suggested, the convergence and stability theorems of iterative sequences generated by new iterative algorithms are also given in q-uniformly smooth Banach spaces.

Formulation, solution and CTL software for coupled thermomechanics systems

  • Niekamp, R.;Ibrahimbegovic, A.;Matthies, H.G.
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-25
    • /
    • 2014
  • In this work, we present the theoretical formulation, operator split solution procedure and partitioned software development for the coupled thermomechanical systems. We consider the general case with nonlinear evolution for each sub-system (either mechanical or thermal) with dedicated time integration scheme for each sub-system. We provide the condition that guarantees the stability of such an operator split solution procedure for fully nonlinear evolution of coupled thermomechanical system. We show that the proposed solution procedure can accommodate different evolution time-scale for different sub-systems, and allow for different time steps for the corresponding integration scheme. We also show that such an approach is perfectly suitable for parallel computations. Several numerical simulations are presented in order to illustrate very satisfying performance of the proposed solution procedure and confirm the theoretical speed-up of parallel computations, which follow from the adequate choice of the time step for each sub-problem. This work confirms that one can make the most appropriate selection of the time step with respect to the characteristic time-scale, carry out the separate computations for each sub-system, and then enforce the coupling to preserve the stability of the operator split computations. The software development strategy of direct linking the (existing) codes for each sub-system via Component Template Library (CTL) is shown to be perfectly suitable for the proposed approach.

Antagonistic effects Na+ and Mg2+ on the structure, function, and stability of mycobacteriophage L1 repressor

  • Bandhu, Amitava;Ganguly, Tridib;Chanda, Palas K.;Das, Malabika;Jana, Biswanath;Chakrabarti, Gopal;Sau, Subrata
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.293-298
    • /
    • 2009
  • Temperate mycobacteriophage L1 encodes an unusual repressor (CI) for regulating its lytic-lysogenic switching and, in contrast to the repressors of most temperate phages, it binds to multiple asymmetric operator DNAs. Here, ions like $Na^+$, $Cl^-$, and $acetate^-$ ions were demonstrated to facilitate the optimal binding of CI to cognate operator DNA, whereas $K^+$, $Li^+$, ${NH_4}^+$, $Mg^{2+}$, $carbonate^{2-}$, and $citrate^{3-}$ ions significantly affected its operator binding activity. Of these ions, $Mg^{2+}$ unfolded CI most severely at room temperature and, compared to $Mg^{2+}$, $Na^+$ provided improved thermal stability to CI. Furthermore, the intrinsic tryptophan fluorescence of CI was changed notably upon replacing $Na^+$ with $Mg^{2+}$ and these opposing effects of $Mg^{2+}$ and $Na^+$ were also noticed in their actions on the C-terminal fragment (CTD) of CI. Taken together, $Na^+$ appeared to be more appropriate than $Mg^{2+}$ for maintaining the biologically active conformation of CI needed for its optimal binding to operator DNA.

STABILITY THEOREM FOR THE FEYNMAN INTEGRAL VIA ADDITIVE FUNCTIONALS

  • Lim, Jung-Ah
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.525-538
    • /
    • 1998
  • Recently, a stability theorem for the Feynman integral as a bounded linear operator on$ L_2$($R^{d}$ /) with respect to measures whose positive and negative variations are in the generalized Kato class was proved. We study a stability theorem for the Feynman integral with respect to measures whose positive variations are in the class of $\sigma$-finite smooth measures and negative variations are in the generalized Kato class. This extends the recent result in the sense that the class of $\sigma$-finite smooth measures properly contains the generalized Kato class.

  • PDF