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STABILITY THEOREM FOR THE FEYNMAN
INTEGRAL VIA ADDITIVE FUNCTIONALS

JUNG AH LM

ABSTRACT. Recently, a stability theorem for the Feynman integral as
a bounded linear operator on Lo (Rd) with respect to measures whose
positive and negative variations are in the generalized Kato class was
proved. We study a stability theorem for the Feynman integral with
respect to measures whose positive variations are in the class of o-
finite smooth measures and negative variations are in the generalized
Kato class. This extends the recent result in the sense that the class
of o-finite smooth measures properly contains the generalized Kato
class.

0. Introduction

Since Feynman path integral was introduced in 1948 in [7], its exis-
tence theory has been developed by many mathematicians. In recent
years the scope of the existence theory for the analytic operator-valued
Feynman integral was widely extended using the theory of additive func-
tionals in the framework of Dirichlet forms {1]. Existence theorems of the
analytic operator-valued Feynman integral of the functions determined
by smooth measures were proved under some conditions in [1]. So it is
natural to ask the corresponding operator-valued Feynman integrals are
stable under perturbations of these smooth measures. In [5], a stability
theorem for the Feynman integral with respect to measures whose pos-
itive and negative variations are in the generalized Kato class, denoted
by GKg4, was proved. It is a partial extension of Lapidus’ result in [15].
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In this paper, we extend the results in [5]. In fact, we prove a sta-
bility theorem for the Feynman integral with respect to signed measures
Wy n,n = 1,2,--- satisfying the fcllowing conditions: For each Borel
set E in RY, {u.(E)}%,, {s; (E)}3%, are nonincreasing sequences and
tn(E) converges to u(E) and there exist v € S, and n € GKj such that
pt < vand pu,; <nforall n € N. Here S, stands for the class of all
o-finite smooth measures. It is presumably well known fact that GKy
is properly contained in S, [1,3]. So Theorem 3.6 which is our main
theorem in this paper is a natural extension of Theorem 4.2 in [5].

1. Preliminaries

Our main concern in this paper lies on the specific functionals de-
termined by signed smooth measures (See section 2). Generalized Kato
class measures were considered in connection with Schrédinger semi-
groups [19] and the concept of smooth measures was introduced by M.
Fukushima in the description of the class of Revuz measures associ-
ated with positive continuous additive functionals in the Dirichlet space
setting [8]. Moreover, the relation between generalized Kato class mea-
sures and smooth measures was examined in [2]. Now we need to recall
definitions and results related to Brownian motion, positive continu-
ous additive functionals, measures in the generalized Kato class, smooth
measures, closed forms and their associated operators.

Let (Q,F,F:, X, P:) be the caronical Brownian motion on R? [4].
Let t be a nonnegative real number. For each w in Q = C([0,c0), R9),
the collection of all continuous functions from [0,00) to R¢, we define a
function Oyw : [0,00) — R? by (§;w)(s) = w(t + s) for all s in [0, 00).

DEFINITION 1.1. A function A : [0,00) x  — R is called a positive
continuous additive functional (abbreviated by PCAF) if A(¢,-) = A; is
Fi-measurable for each ¢ and there exists A € F (called a defining set of
A) satisfying the following properties:

(i) Pr(A) =1 for all z in R9.
(ii) 6w € A for all w in A.

(iii) For each w in A, the functicn A.(w) : [0,00) — R is continuous,

increasing and vanishes at 0 and is additive in the sense that

Atys(w) = Ar(w) + As(Oww)
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for all t,s > 0.

For a nonnegative bounded Borel measurable function V on R¢, we
consider a function AV defined on [0,00) x Q by

(1.1) AV (t,w) = /V(w ) ds

for all (¢,w) in [0,00) x Q. This is a typical example of a positive con-
tinuous additive functional.

DEFINITION 1.2. A positive Borel measure u on R? is said to be in
the generalized Kato class if

lim sup/ —“—(Mzo, d>3,
|

a—0% geRrd z—y|Sa |£13 - yld_Q

lim sup / (logle — y[™u(dy) =0, d=2,
lz—y|<a

a—=0t .cRd

sup/ u(dy) < oo, d=1.
z€R4 J]z—y|<1

We denote by GK 4 the generalized Kato class.
Let H1(R?) be the standard Sobolev space, i.e.,

(1.2)  HYRY = {u € Ly(R% m)| —86% € L*(R%,m),1<i<d}
2
where La(R?,m) denotes the space of R-valued functions on R¢ which
are square integrable with respect to the Lebesgue measure m and the
derivatives are taken in the distributional sense. In this paper, we adopt
Ly(RY) instead of Lyo(R%,m). For a form ¢ and an operator H, D(q)
and D(H) stand for the domains of ¢ and H, respectively. We let £
denote the classical Dirichlet form, that is, the bilinear form acting on
D(€) = HY(RY) :

(1.3) E(u,v) = L Vu-Vuvdm
2 Jre
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and for u,v € D(€), we define
(1.4) & (u,v) = 1/ Vu.- Vvdm-i—/ uvdm.
2 JRa R

We now give the definition of capacity and the definition of smooth
measure.

DEFINITION 1.3. Given an open set G in R, let
(1.5)  Cap(G) = inf{&1(4,w)|u € HY(R?) and v > 1 a.e. on G}.
For an arbitrary set A in R9, let

(1.6) Cap(A) = inf{Cap(G)| A c G c R?, G is open}.

DEFINITION 1.4. A (positive) Borel measure y on R< is called smooth
if p charges no set of zero capacity and if there exists an increasing
sequence {F,,} of compact sets such that

(1.7) u(Fpn) < 00 for n>1,and

(1.8) liTILnCap(K ~F,) =0 for any compact set K c R%.

We shall denote by S the family of all smooth measures and by S, the
family of all o-finite smooth measures.

Noting that every generalized Kato class measure is a Radon measure,
the following proposition was established in [3, Theorem 2.1].

PRrOPOSITION 1.5. GK;C S, C S.

For a signed Borel measure p = 4™ —p~ on R® where ut and ™~ are
the usual positive and negative variations of i, respectively, we say that
pisin S, — GKy if pt isin S, and ™ is in GKy. For p in S, — GKj,
we define Q,, and &, as follows:

(1.9) Q‘,(u,v)—:—/ uvdu=/ uvd/ﬁ—/ uvdyp”
Re Rd R4
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for all u,v in D(Q,) = L2(R?, |u|) N La(R?) and
(1.10) Eu(u,v) = E(u,v) + Qu(u,v)

for all u,v in D(£,) = D(€) N D(Q,).

For pin S, — GKj, let A*" and A*” be PCAF’s corresponding to
ut and p~, respectively. (The existence of A*" and A¥” are guaranteed
by [1, Theorem 3.3.10] and [1, Theorem 3.2.3], respectively). We let
Al = Al T A* . Then (A%)i0 is a continuous additive functional
which has finite variation on every bounded interval [8]. Let us introduce
the notation

(1.11) P, f(2) = Eale™* f(w(t))]

provided that the right-hand side in (1.11) makes sense for f € Lo(R%)
where E, stands for the expectation with respect to P, and P, is the
probability measure associated with the Brownian paths in R? which
start at z at time 0.

Let H be a real or complex Hilbert space equipped with the inner
product (, ) and the norm ||-]|. From [13], we have the following theorem.

THEOREM 1.6. Let g be a densely defined, symmetric closed form in
‘H which is bounded below by ~v. Then there exists a unique bounded
below self-adjoint operator H satisfying that for any € < v, D(q) =
D((H - £)%) and q(u,v) = ((H — &)2u, (H — £)2v) + £(u,v), for all u,v
in D(q). Furthermore, q(u,v) = (Hu,v) for all w in D(H), v in D(q).

From [1, Proposition 3.4.3 and Proposition 3.4.4], we have the follow-
ing proposition.

PROPOSITION 1.7. Let p = ut — u~ be in Sy — GKy4. Then

(i) &. is a densely defined symmetric bilinear form with domain
D(E,) = D(€) N D(Qy)-
(1) &, is closed and bounded below.

(iil) (p%)iz0 is a strongly continuous symmetric semigroup on Lo(R%).
Moreover, let H* be the bounded below self-adjoint operator correspond-
ing to (€., D(E,)) whose existence is guaranteed by Theorem 1.6 and let
H* be the infinitesimal generator of (p}')s>0. Then

(iv) H* = —H*#
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and hence we have

(1.12) P f(z) = e " f(x)

for all f in Ly(R9).
REMARK. By (1.11) and (1.12), we obtain the Feynman-Kac formula

(1.13) e " f(z) = E,[e= 47 f(w(t))]

for every f in Ly(R?) , m-a.e. z in R? and for all ¢ > 0.

Now we extend £, to the subspace D(EE) = D(&,) + iD(E,) of
Ly(R%,C) = Ly(R?) + iLo(R?) where i = /1.
Define EE : D(é’f) — C by

(1.14) ES(u,v)= | Vu Vo dm+/ u® dp
Re R¢
for all u,v in D(SE) . From [1], we have the following propositions.
PROPOSITION 1.8. Let u bein Sy — GKy4. Then for u = u; +iug,v =

vy + tvg In D(SE), éf is represented as follows:

(1.15) Sf(u,v) = Eu(u1,v1) + Eulug,vo) + (€4 (u2,v1) — Eu(ur,v2)].

PROPOSITION 1.9. Let u=pu* —u~ bein S, — GK4. Then

(1) SE is a densely defined symmetric sesquilinear form.
(ii) SE is bounded below and closed.

Moreover, let Hf be the bounded below self-adjoint operator correspond-
ing to (f,f, D(EE)) whose existence is guaranteed by Theorem 1.6. Then
we obtain

(1.16) (e u)(z) = Bale™ u(w(®))]

for every u in Lo(R%,C), m-a.e. z in R® and for all t > 0.
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2. The existence of the analytic (in time) operator-valued
Feynman integral

Now we introduce the definition and the existence theorem of the
analytic (in time) operator-valued Feynman integral of functions that
we are especially interested in. Given w in Q = C([0, 00), R%), let

(2.1) FAw) = FH(w) = e~ At (W)

where y is in S, — GK4 and AY is given in Section 1. Let C,C, and C.
be the set of all complex numbers, all complex numbers with positive
real part and all nonzero complex numbers with nonnegative real part,
respectively.

DEFINITION 2.1. Given t > 0, u € Lo(R%,C) and z € R?, consider
the expression

(JHF*)u)(z) = Ep{e™ 4 ©u(w(t))}
= / e~ A Wy(w(t)) dPy(w),

T

(2.2)

where Q, is the set of w in C([0, c0), R?) such that w(0) = z and P, is
the probability measure associated with the Brownian paths in R¢ which
start at = at time 0. We say that the operator-valued function space
integral Jt(F*) exists for ¢ > 0 if (2.2) defines J*(F*) as an element
of L£(L(R%,C)), the space of bounded linear operators on Ly(R%,C).
If JY(F*) exists for every t > 0 and, in addition, has an extension as
a function of ¢ to an analytic operator-valued function on C;, and a
strongly continuous function on C,, we say that J!(F*) exists for all
t € C,. When t is purely imaginary, Jt(F*#) is called the analytic (in
time) operator-valued Feynman integral of F#.

The following theorem comes from [1]. We state it and give a sketch
of its proof for convenience.

THEOREM 2.2. Let u = u* — u~ be in S, — GK4 and let Ef be
given by (1.14) and HE be the self-adjoint operator corresponding
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to (E5,D(ES)). Then JY(F*) exists for all t € C, and has the
representation

(2.3) JH(FH) = e~tHE

for all t € C, , where e~*H¢ js given meaning via the Spectral Theorem
applied to the self-adjoint operator HE. In particular, for t € R, the
analytic (in time) operator-valued Feynman integral J**(F*) exists and
we have

(2.4) JH(FH) = emitHe

where {e~®H¢  t € R} is the unitary group corresponding to the self-
adjoint operator Hf.

PROOF. By Proposition 1.7, £, given by (1.10) is a densely defined,
symmetric closed bilinear form which is bounded below and the con-
tinuous additive functional A% is related to the operator H* by the
Feynman-Kac formula (1.13). Hence in the light of Theorem 2.2.5 in [1},
the proof is complete. (]

3. Stability theorem

The present paper owes our preceding paper [5], especially section
3. In order to prove Theorem 3.6, the main result of this paper, some
known results in operator theory and a perturbation theorem which was
proved in [5] are necessary. In fact, the main theorem is closely related
to perturbation theories for closed forms. So we collect some important
results of {5] first, and then we state a theorem concerned with form cores
for closed forms (See [2] for precise proofs.) which is also important to
exhibit our main theorem.

Throughout this paper, let H denote a complex Hilbert space with
the inner product (, ) and the norm ||-||. Furthermore, for z,,,z in #, let
&, — z denote that z,, is strongly convergent to = and z, — z denote
that z,, is weakly convergent to z. For operators A,,Aon#H,let A, — A
indicate that A,, converges to A in the strong operator topology.
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DEFINITION 3.1. Let A, A,,,m = 1,2,..- be self-adjoint operators
on H. We say that {A,,}5°_, converges to A in the strong resolvent
sense if

[I+iAn)"t — [I+4A]70,

where I denotes the identity operator and i = +/—1.

From [14] and [13], we have the following two theorems, respectively.

THEOREM 3.2. (Trotter, Kato, Rellich, Neveu) Let H, H,p,
m = 1,2,--- be self-adjoint operators on H. Then the following
statements are equivalent :

(a) {Hm}S°_, converges to H in the strong resolvent sense.

(b) e~#Hm — e~itH for 5]l t in R.

(¢) [[+iXHp] ' — [I+iAH] ! forall AinR, X #0.

(d) e~Hm — e~H yniformly in t on any compact subset of R.

If, in addition, the operators H,, and H are uniformly bounded below,
then (a) implies :

(e) e~ tm — e~tH uniformly int on any compact subset of [0, +00).

THEOREM 3.3. Let {t.} be a nonincreasing sequence of densely de-
fined, closed symmetric forms in ‘H which are uniformly bounded below
by ~. If Hy, is the self-adjoint operator associated with t,,, then H, con-
verges to a self-adjoint operator H > ~ strongly in the generalized sense.
Furthermore, (H,—&)Y?u % (H—¢)?u for allu in LT{D(tn) and £ < 7.
If, in particular, the symmetric form t defined by t(u,u) = T}I—{%o tn(u,u)

with D(t) = UD(t,,) is closable, then H is the self-adjoint operator as-

sociated with ?, the closure of t, and (H, — &)Y%u — (H — £)Y%u for
all w in D(t) and € < 7.

In [5], the following theorem was proved.

THEOREM 3.4. Lett, t,,n=1,2,--- be densely defined, symmetric
closed forms in ‘H satisfying the following properties where H and H,
are the self-adjoint operators associated with t and t,, respectively:

(1) t(u,u) > y(u,u), for allu in D(t),
tn(u,u) > y(u,u), forallvin D(t,),n=1,2,--- with~vy < 0.
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(ii) There is a core D' of t such that D’ C liminf D(t,) and for some
a<7, (Hy,— o)y — (H — a)Y?u for all w in D'.

Then {H,}52, converges to H in the strong resolvent sense.

In general, a o-finite smooth measure may not be a Radon measure.
Furthermore, if p is a nowhere Radon smooth measure, then it may
happen that D(€,) contains no non-trivial continuous functions. Thus
it is necessary to find out a relatively nice form core for a closed form.
To this end we define a class of functions Cy(R?) as follows:

(3.1)
Cy(R%) = {f| f is bounded Borel measurable,

quasi-continuous, and with compact support}.

PROPOSITION 3.5. Let p. be a measure in S, — GKg4. Then D(&,) N
Cy(R?) is a core of €, and hence H'(R?) N Lo(R?, {u|) NCy(R?) is a core
of &,.

PROOF. Since y is a measure in S, — GKjg, there exist real constant
A > 1 and real constants ¢ and (3 such that ]|pé‘+_’\“—f|12 < ceP|f]|2 for
allt > 0and f € Ly(R9). (See [1, Proposition 3.4.7 and Theorem 3.4.8]).
Noting that &, is a closed form, we conclude that D(€,) N C4(R9) is a
core of £,. (See [2, Theorem 5.7}). d

THEOREM 3.6. Let u, tn,n = 1,2,--- be signed measures on (R¢,
B(R%)) satisfying the following properties:
(i) For each Borel set E in R, {un(E)}.,, {u;(E)}, are non-
increasing sequences and p.,(E) converges to pu(E).
(ii) There exist Radon measures v and 7 such that

pt <veSs , p, <neGKy

for allm € N.
For simplicity, let t,, = cﬁfn and t = 55 where £En and EE are given in
Section 1. Assume that t, is uniformly bounded below by a < 0. Then
{H,}22., converges to H in the strong resolvent sense where H,, and H
are self-adjoint operators associated with t,, and t, respectively.
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REMARK 3.7. Using the hypothesis (i) in the above theorem, we get
{pt(E)}3, is a nonincreasing sequence for each Borel set E in RY.
Then the definitions of GK4 and S, and the hypothesis (ii) implies that
foralln €N, u, is in S, — GKg.

REMARK 3.8. A simple proof shows that the limiting measure p is in
S, — GK4. To prove this, let E € B(R?). Then, u}(E) — inf{ut(E)}
and u, (E) — inf{u,;(E)} as n — oo by the monotone convergence
theorem for sequences. Since pu,(E) — u(E) = ut(E) — p~(E) we get
p=pt —p~ =inful —infu, and this implies that inful > pt and
infu; > u~. Hence we conclude that ut € S, and p~ € GKa.

PROOF OF THEOREM 3.6. For each n € N, t,, is a densely defined,
closed symmetric form which is bounded below by Remark 3.7 and
Proposition 1.7. Using (1.15) and hypotheses on measures p,, a direct
calculation shows that t, is a nonincreasing sequence of forms. Since %,
is uniformly bounded below by c, we can define

(3:2) a(f, £) = lim ta(f, f)

for all f in D(g) = L#D(tn'). Let f = g+th be in UD(¢,). By (1.15) and
(3.2), we have

(3.3) a(f,f)=E(g,9) +Eh,h) + lim [ | |gPPdun+ | |hPPdun].
n—00 " fpd Rd

We claim that ¢ Ct. In fact, D(q) C D(t). (See Remark 3.8). And
so for the proof of ¢ C t, it remains to show that for all f = g+ ¢h in

D(q),

(3.4 i [ loPdun = [ 1o du
n—o0 Rd Rd
and
. 2 _ 2
(35) N

If g = xg, where xg denotes the characteristic function of a Borel
set E, (3.4) is true by hypotheses on measures u, and p. For a simple
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function g, (3.4) is easily proved by using the case of characteristic func-
tions. Suppose that g is a nonnegative Borel measurable function. Then
there exists a nonnegative and nondecresing sequence {g,} of simple
functions converging to g. By the monotone convergence theorem, we
have

(36) tia [ loml? din = [ 10/ din
m—0o0 Rd Rd
for all sufficiently large n.
And so,
_ 2
(3.7) Jm (tim [l ) =t [ 19 dn

Using the iterated limit theorem for a double sequence and the case of
simple functions, we have

(3.8) lim [ lim / |gm|? dptr ]

n—oo m—»oo

= lim [ lim / |9ml|? dptn ]

m—>»00 n—)oo

= lim [/Rd lgm | dps ]

m—r00

= / lgl* .
Rd

By (8.7) and (3.8), we conclude that

(3.9) lim / 1912 diam = / 1912 d.
Rd R4

n—oo

For a Borel measurable function g = gt —g~, we easily get (3.4) by using
the case of nonnegative Borel measurable functions. By the essentially
same method as in the proof of (3.4), we can prove (3.5).

Now note that ¢ is a closed form. Hence ¢ is closable. By proposition
3.5, D = D(E,)NCy(RY) is a core of £, and hence D' = D+4D is a core
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of t = £S. Furthermore, D' C D(g) = UD(t,) C D(t). Consequently, it
is easy to show that t is the closure of g and ¢ is bounded below with lower
bound e. Then in the light of Theorem 3.3, (Hy, — £)2u — (H — £)7u
for all u in D(q) and £ < o. Hence we conclude that {H,}32; converges
to H in the strong resolvent sense by Theorem 3.4. 0

COROLLARY 3.9. Under the same conditions as in Theorem 3.6,
(3.10) JE(FEn) — JUEFH)

forallte R,

PROOF. By virtue of Theorem 2.2, we get
(3.11) JH(FHn) = e #HE"  gnd  JH(FH) = e HE

where HE™ and HE are self-adjoint operators associated with Efn and
Eff, respectively. By Theorem 3.6 and Theorem 3.2, we get (3.10). O
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