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A HYBRID PROXIMAL POINT ALGORITHM AND

STABILITY FOR SET-VALUED MIXED VARIATIONAL

INCLUSIONS INVOLVING (A, η)-ACCRETIVE MAPPINGS

Jong Kyu Kim and Hong Gang Li

Abstract. A new class of nonlinear set-valued mixed variational inclu-

sions involving (A, η)-accretive mappings in Banach spaces is introduced
and studied, which includes many kind of variational inclusion (inequal-

ity) and complementarity problems as special cases. By using the resol-

vent operator associated with (A, η)-accretive operator due to Lan-Cho-
Verma, the existence of solution for this kind of variational inclusion is

proved, and a new hybrid proximal point algorithm is established and sug-
gested, the convergence and stability theorems of iterative sequences gen-

erated by new iterative algorithms are also given in q-uniformly smooth

Banach spaces.

1. Introduction

The variational inclusion, which was introduced and studied by Hassouni
and Moudafi [7], is a useful and important generalization of the variational in-
equality. Various variational inclusions have been intensively studied in recent
years. Many authors (see, [1], [3], [4], [5], [6], [10], [11], [12], [14], [15], [19])
introduced the concepts of η-subdifferential operators, maximal η-monotone
operators, H-monotone operators, A-monotone operators, (H, η)-monotone op-
erators, (A, η)-accretive mappings, (G, η)-monotone operators, and defined re-
solvent operators associated with them, respectively.

Moreover, by using the resolvent operator technique, many authors con-
structed some approximation algorithms for some nonlinear variational inclu-
sions in Hilbert spaces or Banach spaces. Recently, Verma [16] has developed
a hybrid version of the Eckstein-Bertsekas [2] proximal point algorithm, intro-
duced the algorithm based on the (A, η)-maximal monotonicity framework and
studied convergence of the algorithm.
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On the other hand, in 2008, Li [13] studied the existence of solutions and the
stability of perturbed Ishikawa iterative algorithm for nonlinear mixed quasi-
variational inclusions involving (A, η)-accretive mappings in Banach spaces by
using the resolvent operator technique (see, [6]).

In this paper, A new class of nonlinear set-valued mixed variational inclu-
sions involving (A, η)-accretive mappings in Banach spaces is introduced and
studied, which includes many kind of variational inclusions (inequalities) and
complementarity problems as special cases. By using the resolvent operator
associated with (A, η)-accretive operator, an existence of solution for this kind
of variational inclusion is proved, and a new hybrid proximal point algorithm is
established and suggested, the convergence and stability theorems of iterative
sequences generated by new iterative algorithms are also given in q-uniformly
smooth Banach spaces.

2. Preliminaries

Throughout this paper, we assume that X is a real Banach space with dual
space X∗, 〈·, ·〉 is the dual pair between X and X∗, 2X denotes the family of
all the nonempty subsets of X, and CB(X) denotes the family of all nonempty
closed bounded subsets of X. The generalized duality mapping Jq : X → 2X

is defined by

Jq(x) = {f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖q, ‖f∗‖ = ‖x‖q−1},∀x ∈ X,

where q > 1 is a constant. In particular, J2 is the usual normalized duality
mapping. It is known that,

Jq(x) = ‖x‖q−2J2(x)

for all x 6= 0 and Jq is single-valued if X∗ is strictly convex. If X = H, the
Hilbert space, then J2 becomes the identity mapping on H. Jq is single-valued
if X∗ is strictly convex [18], or X is uniformly smooth (Hilbert space and
Lp(2 ≤ p <∞) space are 2-uniformly Banach space).

The modulus of smoothness of X is the function ρX : [0,∞)→ [0,∞) defined
by

ρX(t) = sup{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t}.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)

t
= 0.

X is called q-uniformly smooth if there exists a constant c > 0 such that

ρX(t) ≤ ctq, (q > 1).

Remark 2.1. It is well known that Hilbert spaces, Lp(lp) spaces, 1 < p <∞,
and the Sobolev spaces Wm,p, 1 < p <∞ are all q-uniformly smooth.
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In this paper, we consider the following variational inclusion problem:

Let A, g : X → X; η,N : X × X → X be single-valued mappings. Let
M : X × X → 2X be a set-valued (A, η)-accretive mapping. For any u ∈ X,
finding x ∈ X, such that

u ∈ N(x, g(x)) +M(x) (2.1)

Above problem is called a nonlinear set-valued mixed variational inclusion prob-
lem with (A, η)-accretive mappings.

Remark 2.2. A special case of problem (2.1) is the following:
If X = X∗ is a Hilbert space, N = 0 is the zero operator in X, and u = 0,

then problem (2.1) becomes the parametric usual variational inclusion

0 ∈M(x)

with an (A, η)-maximal monotone mapping M , which was studied by Verma
[16].

We know that a number of known special classes of variational inclusions
and variational inequalities in the problem (2.1) are have studied(see [1, 8, 9,
18]).

Let us recall the following results and concepts.

Definition 2.3. Let S be a selfmap of X, x0 ∈ X, and let

xn+1 = h(S, xn)

define an iteration procedure which yields a sequence of points {xn}∞n=0 in X.
Suppose that {x ∈ X : Sx = x} 6= ∅ and {xn}∞n=0 converges to a fixed point x∗

of S. Let {un} ⊂ X and

εn = ‖un+1 − h(S, un)‖.

If lim
n→∞

εn = 0 implies that un → x∗, then the iteration procedure {xn} is said

to be S-stable or stable with respect to S.

Definition 2.4. A single-valued mapping A : X → X is said to be

(i) accretive if

〈A(x1)−A(x2), Jq(x1 − x2)〉 ≥ 0, ∀x1, x2 ∈ X;

(ii) strictly accretive if A is accretive and 〈A(x1)−A(x2), Jq(x1−x2)〉 = 0
if and only if x1 = x2 ∀x1, x2 ∈ X;

(iii) r−strongly η-accretive if there exists a constant r > 0 such that

〈A(x1)−A(x2), Jq(η(x1, x2))〉 ≥ r‖x1 − x2‖q, ∀x1, x2 ∈ X;

(iv) α-Lipschitz continuous if there exists a constant α > 0 such that

‖A(x1)−A(x2)‖ ≤ α‖x1 − x2‖,∀x1, x2 ∈ X.
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Definition 2.5. A single-valued mapping η : X → X is said to be τ -Lipschitz
continuous if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖,∀x, y ∈ X.

Definition 2.6. A single-valued mapping N : X ×X → X is said to be

(i) (µ, ν)-Lipschitz continuous if there exist tow constants µ, ν > 0 such
that

‖N(x1, y1)−N(x2, y2)‖ ≤ µ‖x1 − x2‖+ ν‖y1 − y2‖ ∀xi, yi ∈ X, i = 1, 2;

(ii) (ψ, κ)-relaxed cocoercive with respect to A in the first argument, if there
exist constants ψ, κ > 0 such that

〈N(x1, ·)−N(x2, ·), Jq(A(x1)−A(x2))〉 ≥ −ψ‖N(x1, ·)−N(x2, ·)‖q+κ‖x1−x2‖q,
for all x1, x2 ∈ X

Definition 2.7. Let A : X → X and η : X×X → X be single-valued mappings.
A set-valued mapping M : X → 2X is said to be

(i) accretive if

〈u1 − u2, Jq(x1 − x2)〉 ≥ 0, ∀x1, x2 ∈ X,u1 ∈M(x1), u2 ∈M(x2);

(ii) η-accretive if

〈u1 − u2, Jq(η(x1, x2))〉 ≥ 0, ∀x1, x2 ∈ X,u1 ∈M(x1), u2 ∈M(x2);

(iii) m-relaxed η-accretive, if there exists a constant m > 0 such that

〈u1−u2, Jq(η(x1, x2))〉 ≥ −m‖x1−x2‖q,∀x1, x2 ∈ X,u1 ∈M(x1), u2 ∈M(x2).

(iv) A-accretive if M is accretive and (A+ ρM)(X) = X for all ρ > 0;
(v) (A, η)-accretive if M is m-relaxed η-accretive and (A + ρM)(X) = X

for every ρ > 0.

We can define the generalized resolvent operator RA,ηρ,M as follows [12].

Definition 2.8. ([12]) Let η : X × X → X be a single-valued mapping, A :
X → X be a strictly η-accretive single-valued mapping and M : X×X → 2X be

an (A, η)-accretive mapping. The generalized resolvent operator RA,ηρ,M : X → X
is defined by

RA,ηρ,M (x) = (A+ ρM)−1(x)

for all x ∈ X, where ρ > 0 is a constant.

Remark 2.9. The (A, η)-accretive mappings is more general than (H, η)-monotone
mappings and m-accretive mappings in Banach space or Hilbert space, and the
resolvent operators associated with (A, η)-accretive mappings include the cor-
responding resolvent operators associated with (H, η)-monotone operators, m-
accretive mappings, A-monotone operators, η-subdifferential operators [5, 8, 9,
18].
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Lemma 2.10. ([12]) Let η : X×X → X be a τ -Lipschtiz continuous mapping,
A : X → X be a r-strongly η-accretive mapping, and M : X ×X → 2X be an

(A, η)-accretive mapping. Then the generalized resolvent operator RA,ηρ,M : X →
X is τ q−1/(r −mρ)-Lipschitz continuous, that is,

‖RA,ηρ,M (x)−RA,ηρ,M (y)‖ ≤ τ q−1

r −mρ
‖x− y‖

for all x, y ∈ X. where ρ ∈ (0, r/m).

In the study of characteristic inequalities in q-uniformly smooth Banach
spaces, Xu[18] proved the following result .

Lemma 2.11. ([18]) Let X be a real uniformly smooth Banach space. Then
X is q-uniformly smooth if and only if there exists a constant cq > 0 such that
for all x, y ∈ X,

‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q.

Lemma 2.12. ([17]) Let {ξn}∞n=0 be a nonnegative real sequence and {ϕn}∞n=0

be a real sequence in [0, 1] such that
∞∑
n=0

ϕn = ∞. If there exists a positive

integer n1 such that

ξn+1 ≤ (1− ϕn)ξn + ϕnχn, ∀n ≥ n1,

where χn ≥ 0 for all n ≥ 0 and χn → 0(n→∞), then lim
n→∞

ξn = 0.

3. Main Results

We can get the following result from the definition of RA,ηρ,M(x).

Lemma 3.1. Let X be a Banach space. Let η : X ×X → X be a τ -Lipschtiz
continuous mapping, A : X → X be a r-strongly η-accretive mapping, and
M : X → 2X be an (A, η)-accretive mapping. Then the following statements
are mutually equivalent:

(i) An element x ∈ X is a solution of problem (2.1).
(ii) For a x ∈ X, we have

x = RA,ηρ,M (A(x)− ρN(x, g(x)) + u), (3.1)

where ρ > 0 is a constant.

Now, We give the existence theorem of the problem (2.1).

Theorem 3.2. Let X be a q-uniformly smooth Banach space, η : X×X → X be
a τ -Lipschtiz continuous mapping, and A : X → X be a r-strongly η-accretive
mapping and α-Lipschitz continuous. Let g : X → X be Lipschitz continuous
with constants β. Let N : X × X → X be (µ, ν)-Lipschitz continuous, and
(ψ, κ)-relaxed cocoercive with respect to A in the first argument. Let M : X ×
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X → 2X be a set-valued (A, η)-accretive mapping. If the following condition
holds

τ q( q

√
αq + qρ(cqψµq − qκ) + µqρq + ρνβ) < τ(r −mρ), (3.2)

where cq > 0 is the same as in Lemma 2.11, and ρ ∈ (0, rm ). Then the problem
(2.1) has a solution x∗ ∈ X.

Proof. Define a mapping G̃ : X → 2X as follows:

G̃(x) = RA,ηρ,M (A(x)− ρN(x, g(x))− u), ∀x ∈ X. (3.3)

For any ε > 0 and any elements x1, x2 ∈ X, if F (xi) ∈ G̃(xi) and

si = A(xi)− ρN(xi, g(xi))− u (i = 1, 2),

then by (3.1), (3.3) and Lemma 2.10, we have

‖F (x1)− F (x2)‖ = ‖RA,ηρ,M (s1)−RA,ηρ,M (s2)‖

≤ τ q−1

r −mρ
(ρ‖N(x2, g(x1))−N(x2, g(x2))‖ (3.4)

+‖A(x1)−A(x2)− ρ(N(x1, g(x1))−N(x2, g(x1)))‖).
By (ψ, κ)-relaxed cocoercive with respect to A in the first argument and Lemma
2.10, we obtain

‖A(x1)−A(x2)− ρ(N(x1, g(x1))−N(x2, g(x1)))‖q

≤ ‖A(x1)−A(x2)‖q + cqρ
q‖N(x1, g(x1))−N(x2, g(x1))‖q

−qρ〈N(x1, ·)−N(x2, ·), Jq(A(x1)−A(x2))〉
≤ (αq + qcqψµ

qρ− qκρ+ µqρq)‖x1 − x2‖q (3.5)

and

‖N(x2, g(x1))−N(x2, g(x2))‖ ≤ νβ‖x1 − x2‖. (3.6)

Combing (3.4), (3.5) and (3.6), we have

‖F (x1)− F (x2)‖ ≤ θ‖x1 − x2‖. (3.7)

where

θ =
τ q−1

r −mρ
( q

√
αq + qρ(cqψµq − κ) + µqρq + ρνβ)

From (3.7), we know that

sup
F (x1)∈G̃(x1)

d(F (x1), G̃(x2)) ≤ θ‖x1 − x2‖,∀x1, x2 ∈ X. (3.8)

Similarly, we have

sup
F (x2)∈G̃(x2)

d(F (x2), G̃(x1)) ≤ θ‖x1 − x2‖,∀x1, x2 ∈ X. (3.9)

It follows from (3.8), (3.9) and the definition of Hausdorff metric that

D(G̃(x1), G̃(x2)) ≤ θ‖x1 − x2‖, ∀x1, x2 ∈ X,
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where

θ =
τ q−1

r −mρ
( q

√
αq + q(cqψµq − qκ)ρ+ µqρq + ρνβ).

It follows from (3.2), (3.3), and (3.9) that G̃ has a fixed point in X, i.e., there

exists a point x∗ ∈ X such that x∗ ∈ G̃(x∗), and

x∗ = RA,ηρ,M (A(x∗)− ρN(x∗, g(x∗)) + u).

This completes the proof.

Remark 3.3. If X is 2-uniformly smooth and there exist ρ > 0 such that

|ρ− τ2(κ− ψµ2)− rt
c2τ

2µ2 − t2 | <√
[τ2(κ− ψµ2)− rt]2 − (c2τ2µ2 − t2)(τ2α2 − r2)

c2τ
2µ2 − t2 ,

κτ2 > rt+ τ2ψµ2 +
√

(c2τ2µ2 − t2)(τ2α2 − r2),

τ2µ2 > t2,

t = τνβ +m

(3.10)

then (3.2) holds, and the problem (2.1) has a solution.

Based on Lemma 3.1, we can develop a new hybrid proximal point algorithm
for finding an iterative sequence solving problem (2.1) as follows:

Algorithm 3.4. Let x∗ be a solution of problem (2.1). Let {an}∞n=0, {bn}∞n=0

and {ρn}∞n=0 be three nonnegative sequences such that

lim
n→∞

bn = 0, a = lim sup
n→∞

an < 1, ρn ↑ ρ ≤ ∞, (n = 0, 1, 2, · · · .)

Step 1: For an arbitrarily chosen initial point x0 ∈ X, set

x1 = (1− a0)x0 + a0y0,

where the y0 satisfies

‖y0 −RA,ηρn,M
(A(x0)− ρnN(x0, g(x0)) + u)‖ ≤ b0‖y − x0‖;

Step 2: The sequence {xn} is generated by an iterative procedure

xn+1 = (1− an)xn + anyn, (3.11)

and yn satisfies

‖yn −RA,ηρn,M
(A(xn)− ρnN(xn, g(xn)) + u)‖ ≤ bn‖yn − xn‖,

where n = 1, 2, · · · .
We consider the following sequences for the stability problem for the conver-

gence.
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Let {wn}∞n=0 be any sequence in X and define {εn}∞n=0 by{
εn = ‖wn+1 − [(1− an)wn + anyn]‖,
‖yn −RA,ηρn,M

(A(wn)− ρnN(xn, g(wn)) + u)‖ ≤ bn‖yn − wn‖,
(3.12)

where n = 0, 1, · · · .

Remark 3.5. For a suitable choice of the mappings A, η,N,M, g, and space
X, the Algorithm 3.4 can be degenerated to a number of algorithms involving
many known algorithms which due to classes of variational inequalities and
variational inclusions[1, 8, 9, 16, 18].

We are in a position to construct the convergence theorem of the iterative
algorithm.

Theorem 3.6. Let X,A,N,M, g be the same as in Theorem 3.2, and the
condition (3.2) holds. Let {an}∞n=0, {bn}∞n=0 and {ρn}∞n=0 be the same as in
Algorithm 3.4. Then the sequence {xn} in Algorithm 3.4 converges to a solution
x∗ of problem (2.1) with the convergence rate

ϑ = (1− a) + a
τ q−1

r −mρ
( q

√
αq + q(cqψµq − κ)ρ+ µqρq + ρνβ) (3.13)

< 1.

Proof. Suppose that {xn} is the sequence generated by the hybrid proximal
point Algorithm 3.4, and that x∗ is a solution of (2.1). From Lemma 3.1, we
have

x∗ = (1− an)x∗ + anR
A,η
ρn,M

(A(x∗)− ρnN(x∗, g)(x∗) + u).

For all n ≥ 0, set

zn+1 = (1− an)xn + anR
A,η
ρn,M

(A(xn)− ρnN(xn, g(xn)) + u).

Next, we find the estimate

‖zn+1 − x∗‖
≤ (1− an)‖xn − x∗‖+ an‖RA,ηρn,M)(A(xn)− ρnN(xn, g(xn)) + u)

−RA,ηρn,M
(A(x∗)− ρnN(x∗, g(x∗)) + u)‖

≤ (1− an)‖xn − x∗‖ (3.14)

+an
τ q−1

r −mρn
[‖A(xn)−A(x∗)− ρn(N(xn, g(xn))−N(x∗, g(xn)))‖

+ρn‖N(x∗, g(xn))−N(x∗, g(x∗))‖].
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By (ψ, κ)-relaxed cocoercive with respect to A in the first argument and Lemma
2.11, we obtain

‖A(xn)−A(x∗)− ρn(N(xn, g(xn))−N(x∗, g(xn)))‖q

≤ ‖A(xn)−A(x∗)‖q + cqρ
q
n‖N(xn, g(xn))−N(x∗, g(xn))‖q

−qρn〈N(xn, g(xn))−N(x∗, g(xn)), Jq(A(xn)−A(x∗))〉
≤ (αq + qcqψµ

qρn − qκρn + µqρqn)‖xn − x∗‖q, (3.15)

and

‖N(x∗, g(xn))−N(x∗, g(x∗))‖ ≤ νβ‖xn − x∗‖. (3.16)

It follows that

‖zn+1 − x∗‖ ≤ θn‖xn − x∗‖, (3.17)

where

θn = (1− an) + an
τ q−1

r −mρn
( q

√
αq + q(cqψµq − κ)ρn + µqρqn + ρnνβ).

Since xn+1 = (1− an)xn + anyn, we have xn+1 − xn = an(yn − xn). It follows
that

‖xn+1 − zn+1‖
≤ ‖(1− an)xn + anyn − [(1− an)xn + anR

A,η
ρn,M

(A(xn)− ρnN(xn, g(xn)) + u)]‖

≤ an‖yn −RA,ηρn,M
(A(xn)− ρnN(xn, g(xn)) + u)‖

≤ anbn‖yn − xn‖.

Next, we can obtain

‖xn+1 − x∗‖ ≤ ‖zn+1 − x∗‖+ ‖xn+1 − zn+1‖
≤ ‖zn+1 − x∗‖+ anbn‖yn − xn‖ (3.18)

≤ ‖zn+1 − x∗‖+ bn‖xn+1 − xn‖
≤ ‖zn+1 − x∗‖+ bn‖xn+1 − x∗‖+ bn‖x∗ − xn‖.

This implies that

‖xn+1 − x∗‖ ≤
θn + bn
1− bn

‖xn − x∗‖. (3.19)

Let

ϑ = lim sup
n→∞

θn + bn
1− bn

= lim sup
n→∞

θn

= (1− a) + a
τ q−1

r −mρ
( q
√
αq + qcqψµqρ− qκρ+ µqρq + ρνβ).

Then, we have

‖xn+1 − x∗‖ ≤ ϑ‖xn − x∗‖.
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By (3.2), it follows that 0 < ϑ < 1, and the sequence {xn} in Algorithm 3.4
converges to a solution x∗ of problem (2.1) with convergence rate ϑ. This
completes the proof.

Now, we will give the stability problem for the convergence of the sequence
{xn}.

Theorem 3.7. Let X,A,N,M, g be the same as in Theorem 3.2, and the con-
dition (3.2) holds. If 0 < λ ≤ an, then lim

n→∞
wn = x∗ if and only if lim

n→∞
εn = 0,

where εn is defined by (3.12), that is, the sequence {xn} in (3.11) is stable.

Proof. Let the x∗ be a unique solution of problem (2.1). Then it follows from
Lemma 3.1 that

x∗ = (1− an)x∗ + anR
A,η
ρn,M

(A(x∗)− ρnN(x∗, g(x∗)) + u) (3.20)

From (3.19) and (3.20), it follows that

‖xn+1 − x∗‖ ≤
θn + bn
1− bn

‖xn − x∗‖. (3.21)

By (3.11) and the proof of inequality (3.17), we obtain

‖wn+1 − x∗‖
≤ ‖wn+1 − [(1− an)wn + anyn]‖+ ‖[(1− an)wn + anyn]− x∗‖ (3.22)

≤ εn + (1− an)‖wn − x∗‖+ an‖yn −RA,ηρn,M
(A(x∗)− ρnN(x∗, g(x∗)) + u)‖

≤ εn + (1− an)‖wn − x∗‖+ an‖yn −RA,ηρn,M
(A(wn)− ρnN(wn, g(wn)) + u)]‖

+‖RA,ηρn,M
(A(wn)− ρnN(wn, g(wn)) + u)]−RA,ηρn,M

(A(x∗)− ρnN(x∗, g(x∗)) + u)‖
≤ εn + {(1− an) + anbn

+an
τ q−1

r −mρn
[ q

√
αq + q(cqψµq − κ)ρn + µqρqn + νβρn]}‖wn − x∗‖.

Since 0 < λ ≤ an, by (3.22), we have

‖zn+1 − x∗‖ ≤ [1− an(1− θ)]‖zn − x∗‖+ (1− θ)an
εn

λ(1− θ)
, (3.23)

where

θ = lim sup
n→∞

[bn +
τ q−1

r −mρn
( q

√
αq + (qcqψµq − qκ)ρn + µqρqn + ρnνβ)]

=
τ q−1

r −mρ
( q

√
αq + q(cqψµq − κ)ρ+ µqρq + ρνβ)

< 1.

Suppose that lim
n→∞

εn = 0. Let ξn = ‖zn − x∗‖, ϕn = an(1 − θ), and χn =

εn
ϕn(1−θ) . From

∞∑
n=0

an =∞ and Lemma 2.12, we have lim
n→∞

zn = x∗.
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Conversely, if lim
n→∞

zn = x∗, then we get

εn = ‖wn+1 − [(1− an)wn + anyn]‖
≤ ‖zn+1 − x∗‖+ ‖(1− an)wn + anyn − x∗‖ (3.24)

≤ ‖zn+1 − x∗‖+ [1− an(1− θ)]‖zn − x∗‖
→ 0, (n→∞).

The sequence {xn} generated by (3.11) is stable. This completes the proof.

Remark 3.8. For a suitable choice of the mappings A, η,N,M, g, we can ob-
tain several known results [8, 18] as special cases of Theorem 3.2, 3.6, 3.7.
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