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Zenon Jan Jab loński and Jan Stochel

Instytut Matematyki, Uniwersytet Jagielloński, ul.  Lojasiewicza 6, PL-30348 Kra-
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Abstract. Criteria for an algebraic operator T on a complex Hilbert space H to be

unitary are established. The main one is written in terms of the convergence of sequences

of the form {‖Tn

h‖}∞
n=0 with h ∈ H. Related questions are also discussed.

1. Introduction

By the spectral theorem, a unitary operator with a finite spectrum is algebraic
and its spectrum is contained in T, the unit circle centered at 0. The most funda-
mental example of a unitary algebraic operator is the Fourier transform. According
to the famous theorem of Plancherel, the Fourier transform extends uniquely to a
unitary operator on L2(R) (see e.g., [18, Theorem IX.6]). Denote it by F . The
Fourier transform F has the following properties:

F
0 = I, F

1 = F , F
2 = P , F

3 = F
−1 and F

4 = I,

where I is the identity operator on L2(R) and P (f)(x) = f(−x) for f ∈ L2(R).
This implies that p(x) = x4 is the minimal polynomial of F . As a consequence,
the Fourier transform is a unitary algebraic operator with (purely point) spectrum
σ(F ) = {1,−1, i,−i} (see [18, Theorems IX.1 and IX.6]).
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A natural question arises under what additional assumptions an algebraic
(bounded linear) operator T on a complex Hilbert space H with spectrum in T

is unitary. To answer this question let us look at some broader classes A of opera-
tors that can be characterized as follows: an operator T belongs to A if and only if
the sequences of the form {‖T nh‖2}∞n=0 (h ∈ H) belong to the corresponding class
S of scalar sequences; in most cases, the class S appears naturally in harmonic
analysis on ∗-semigroups. In particular, the celebrated theorem of Lambert states
that the class of subnormal operators corresponds to Stieltjes moment sequences
(see [17]). In this line of correspondence, we can list the classes of m-isometric
operators [2, 3, 4, 13], completely hypercontractive operators [1], completely hyper-
expansive operators [5], alternatingly hyperexpansive operators [20], conditionally
positive definite operators [14], and so on. The answer to our question (see Theo-
rem 1.1 below) is written in terms of the convergence of the sequences of the form
{‖T nh‖}∞n=0 (h ∈ H). The condition of their convergence seems to be optimal,
since in the light of Remark 3.3 the assumption of their boundedness ceases to be
sufficient. It is also worth mentioning that there are contractions (for which the
sequences {‖T nh‖}∞n=0, h ∈ H, automatically converge) with spectrum in T, called
unimodular contractions, which are not unitary (see [19]). Clearly, unimodular con-
tractions are normaloid. Let us further note that if we replace the class of normaloid
operators by a class of more regular operators, it may turn out that members of
the latter class with spectrum in T are unitary. In particular, by Stampfli’s theo-
rem (see [21, Corollary, p. 473]), every hyponormal operator with spectrum in T is
unitary.

Before formulating the main result, we establish some notation and terminology.
Denote by C the field of complex numbers. Set T = {z ∈ C : |z| = 1}. Write N,
Z+ and R+ for the sets of positive integers, nonnegative integers and nonnegative
real numbers, respectively. Let B(H) stand for the C∗-algebra of all bounded
linear operators on a complex Hilbert space H. For T ∈ B(H), denote by N (T ),
σ(T ) and r(T ) the kernel, the spectrum and the spectral radius of T , respectively.
An operator T ∈ B(H) is said to be normaloid if r(T ) = ‖T ‖, or equivalently, by
Gelfand’s formula for spectral radius, if and only if ‖T n‖ = ‖T ‖n for all n ∈ N. Call
T ∈ B(H) algebraic if there exists a nonzero polynomial p (in one indeterminate
with complex coefficients) such that p(T ) = 0; such a p is said to be minimal if p
is the (unique) monic polynomial of least degree among all nonzero polynomials q

such that q(T ) = 0.
The following theorem, which is the main result of the paper, characterizes

unitary algebraic operators in terms of the convergence of the sequences of the form
{‖T nh‖}∞n=0. Its proof is given in Section 3.

Theorem 1.1. Suppose that T ∈ B(H) is algebraic and σ(T ) ⊆ T. Then the

following statements are equivalent:

(i) T is unitary,

(ii) T is normaloid,
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(iii) ‖T ‖ 6 1 (or equivalently, ‖T ‖ = 1),

(iv) the sequence {‖T nh‖}∞n=0 is convergent in R+ for every h ∈ H.

2. Preparatory Facts

In this section we give some basic facts about algebraic operators needed in this
paper. We begin with a purely linear algebra result, the proof of which is left to
the reader. If M is a complex vector space, then the identity transformation on M

is denoted by IM (or simply by I if no ambiguity arises). We write

M = M1 ∔ . . .∔ Mm(2.1)

in the case when M is a direct sum of (finitely many) vector subspaces M1, . . . ,Mm.

Lemma 2.1. Suppose that (2.1) holds. Let A : M → M be a linear transformation

such that A(Mj) ⊆ Mj for all j = 1, . . . ,m and let z ∈ C. Then A − zIM is a

bijection if and only if A|Mj
− zIMj

is a bijection for all j = 1, . . . ,m. Moreover,

if A− zIM is a bijection, then (A− zIM )−1(Mj) = Mj for all j = 1, . . . ,m and

(A|Mj
− zIMj

)−1 = (A− zIM )−1|Mj
, j = 1, . . . ,m.

Corollary 2.2. Suppose that H is a complex Hilbert space which is a direct sum of

finitely many nonzero closed vector subspaces H1, . . . ,Hm. Let T ∈ B(H) be such

that T (Hj) ⊆ Hj for all j = 1, . . . ,m. Then σ(T |Hj
) ⊆ σ(T ) for all j = 1, . . . ,m.

For the sake of self-containedness, we sketch the proof of the following lemma
that collects indispensable facts about algebraic operators.

Lemma 2.3. Let T ∈ B(H). Then the following conditions are equivalent:

(i) T is algebraic,

(ii) there exist an integer m > 1, integers i1, . . . , im > 1, distinct complex numbers

z1, . . . , zm and closed nonzero vector subspaces H1, . . . ,Hm of H such that

(ii-a) H = H1 ∔ . . .∔Hm,

(ii-b) T (Hj) ⊆ Hj for all j = 1, . . . ,m,

(ii-c) (Tj − zjIj)
ij = 0 for all j = 1, . . . ,m, where Tj := T |Hj

and Ij := IHj
,

(ii-d) σ(T ) = {z1, . . . , zm} and σ(Tj) = {zj} for all j = 1, . . . ,m,

(ii-e) there exists a constant c ∈ (0,∞) such that

‖hj‖ 6 c
∥

∥

∥

m
∑

k=1

hk

∥

∥

∥
, j = 1, . . . ,m, h1 ∈ H1, . . . , hm ∈ Hm.(2.2)
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Proof. (i)⇒(ii) Let T be an algebraic operator and p be its minimal polynomial.
Clearly, deg p > 1. It follows from the fundamental theorem of algebra that

p(x) = (x − z1)
i1 · · · (x− zm)im

with unique integers i1, . . . , im > 1 and distinct complex numbers z1, . . . , zm. In
view of [6, Lemma 6.1], the condition (ii-a) holds with Hj := N ((T − zjI)ij ) 6= {0}
for j = 1, . . . ,m. This implies that H1, . . . ,Hm are closed vector subspaces of H
which are invariant for T . As a consequence, (ii-b) and (ii-c) hold. By the spectral
mapping theorem, σ(T ) ⊆ {z1, . . . , zm}. Since (Tj − zjIj)

ij = 0 and Hj 6= {0}, we
infer from the spectral mapping theorem and Corollary 2.2 that

{zj} = σ(Tj) ⊆ σ(T ), j = 1, . . . ,m,

which implies (ii-d).
Now, we proceed to the proof of (ii-e). Define for j = 1, . . . ,m the linear

projection Pj : H → H by

Pj(h1 + . . . + hm) = hj , h1 ∈ H1, . . . , hm ∈ Hm.

By (ii-a), this definition is correct. Using [6, Lemma 6.1(iii)] we see that

K2 := H2 ∔ . . .∔Hm = N

( m
∏

j=2

(T − zjI)ij
)

,

and so K2 is a closed vector subspace of H. Since, by (ii-a), H = H1 ∔ K2, we
infer from [7, Theorem III.13.2] that P1 ∈ B(H). A similar argument shows that
Pj ∈ B(H) for all j ∈ {1, . . . ,m}. This implies (2.2).

(ii)⇒(i) It is enough to note that p(T ) = 0 with p(x) = (x−z1)i1 · · · (x−zm)im .
This completes the proof.

3. Proof of the Main Result

We begin this section by stating an auxiliary lemma.

Lemma 3.1 ([11, Lemma 2.1]). Let b, w ∈ C be such that |w| = 1 and w 6= ±1.

Assume that the sequence {Re (wnb)}∞n=0 is convergent. Then b = 0.

Before proving the main result of this paper, we characterize power bounded
algebraic operators with spectrum in the unit circle. Recall that T ∈ B(H) is said
to be power bounded if supn∈Z+

‖T n‖ < ∞.

Lemma 3.2. Let T ∈ B(H). Then the following conditions are equivalent:

(i) T is a power bounded algebraic operator such that σ(T ) ⊆ T,

(ii) there exist an integer m > 1, closed nonzero vector subspaces H1, . . . ,Hm of

H and distinct complex numbers z1, . . . , zm such that
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(ii-a) H = H1 ∔ . . .∔Hm,

(ii-b) T (h1 + . . . + hm) = z1h1 + . . . + zmhm for all h1 ∈ H1, . . . , hm ∈ Hm,

(ii-c) {z1, . . . , zm} ⊆ T.

Proof. (i)⇒(ii) Assume that T is a power bounded algebraic operator such that
σ(T ) ⊆ T. By Lemma 2.3, there exist an integer m > 1, integers i1, . . . , im > 1, dis-
tinct complex numbers z1, . . . , zm and closed nonzero vector subspaces H1, . . . ,Hm

of H that satisfy the conditions (ii-a)-(ii-d) of this lemma. Since σ(T ) ⊆ T, we have

|zl| = 1, l = 1, . . . ,m.(3.1)

Fix k ∈ {1, . . . ,m}. Take hk ∈ Hk \ {0}. Using (3.1), Lemma 2.3(ii-c) and [6,
Sublemma 6.3], we deduce that

αn(hk) :=
1

nN(hk)
‖T n

k hk‖ converges to a positive real number as n → ∞,(3.2)

where N(hk) is the unique nonnegative integer such that

(Tk − zkIk)N(hk)hk 6= 0 and (Tk − zkIk)N(hk)+1hk = 0.(3.3)

In particular, we have

‖T n
k hk‖ = nN(hk)αn(hk), n > 1.(3.4)

Since Tk is power bounded, the sequence {‖T n
k hk‖}∞n=0 is bounded. Hence, one can

infer from (3.2) and (3.4) that N(hk) = 0. This, together with (3.3), implies that
Tkhk = zkhk. As a consequence, the system T , z1, . . . , zm, H1, . . . , Hm satisfies
the conditions (ii-a), (ii-b) and (ii-c).

(ii)⇒(i) By (ii-a) and (ii-b), p(T ) = 0 with p(x) = (x − z1) · · · (x − zm), which
means that T is an algebraic operator. According to the spectral mapping theorem,
σ(T ) ⊆ {z1, . . . , zm}. In turn, by (ii-b) and the assumption that each Hi is nonzero,
we deduce that z1, . . . , zm are eigenvalues of T . Therefore, by (ii-c), we have

σ(T ) = {z1, . . . , zm} ⊆ T.

Now, using Lemma 2.3(ii-e) (or the uniform boundedness principle), we deduce the
power boundedness of T from (ii-a), (ii-b) and (ii-c). This completes the proof.

Remark 3.3. Regarding Theorem 1.1, we note that in view of Lemma 3.2 there
exist algebraic operators T with spectrum in T that are not unitary but have the
property that each sequence {‖T nh‖}∞n=0 is bounded (or equivalently, T is power
bounded). ♦

Now, we are ready to prove the main result of this paper.
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Proof of Theorem 1.1. The implications (i)⇒(ii)⇒(iii)⇒(iv) are obvious.
(iv)⇒(i) Assume that T is algebraic, σ(T ) ⊆ T and the sequence {‖T nh‖}∞n=0

is convergent in R+ for every h ∈ H. By the uniform boundedness principle, T

is power bounded. In view of the implication (i)⇒(ii) of Lemma 3.2, there exist
an integer m > 1, distinct complex numbers z1, . . . , zm and closed nonzero vector
subspaces H1, . . . ,Hm of H that satisfy the conditions (ii-a), (ii-b) and (ii-c) of
Lemma 3.2. Fix distinct k, l ∈ {1, . . . ,m}. Take hk ∈ Hk and hl ∈ Hl. Then, by
the conditions (ii-a), (ii-b) and (ii-c) of Lemma 3.2, we have

‖T n(hk + hl)‖
2 = ‖znkhk + znl hl‖

2

= ‖hk‖
2 + 2Re

(

(zkz̄l)
n〈hk, hl〉

)

+ ‖hl‖
2, n > 0.

Combined with (iv), this implies that the sequence
{

Re
(

(zkz̄l)
n〈hk, hl〉

)}∞

n=0
is

convergent. If zkz̄l = −1, then we see that Re 〈hk, hl〉 = 0. Substituting ihk in
place of hk, we deduce that 〈hk, hl〉 = 0. The only possibility left is that zkz̄l 6= ±1.
Since, by the condition (ii-c) of Lemma 3.2, |zkz̄l| = 1, we infer from Lemma 3.1
that 〈hk, hl〉 = 0. This shows that H = H1 ⊕ · · · ⊕Hm. Hence, by the conditions
(ii-b) and (ii-c) of Lemma 3.2, we conclude that T is a unitary operator. This
completes the proof.

4. Related Results

For the reader’s convenience, we record here some useful facts related to the
main topic of this paper concerning certain classes of operators. We begin by
discussing the question of the existence of the limits limn→∞ ‖T nh‖ in the case of
normaloid operators and the issue of strong stability1) in the context of subnormal
operators. Both are intimately related to Theorem 1.1.

Proposition 4.1. Let T ∈ B(H) be a normaloid operator. Then the following

conditions are equivalent:

(i) the sequence {‖T nh‖}∞n=0 is convergent in R+ for every h ∈ H,

(ii) T is power bounded,

(iii) T is a contraction.

Proof. By the uniform boundedness principle and Gelfand’s formula for r(T ), (i)
implies (ii) and (ii) implies (iii). That (iii) implies (i) is obvious.

Before formulating the next result, we give the necessary definitions and facts
related to the concept of subnormality. Recall that an operator T ∈ B(H) is said to
be subnormal if there exist a complex Hilbert space K and a normal operator N ∈

1) We refer the reader to [15, 16] for a discussion of the different types of stability of
operators.
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B(K) such that H ⊆ K (isometric embedding) and Th = Nh for all h ∈ H. Such
an N is called a normal extension of T ; if K has no proper closed vector subspace
containing H and reducing N , then N is called minimal. By a semispectral measure

of a subnormal operator T ∈ B(H) we mean the Borel B(H)-valued measure F on
C defined by

F (∆) = PE(∆)|H, ∆ - Borel subset of C,(4.1)

where E is the spectral measure of a minimal normal extension N ∈ B(K) of T and
P ∈ B(K) is the orthogonal projection of K onto H. In view of [12, Proposition 5],
a subnormal operator has exactly one semispectral measure. We also need the
following fact (see [12, Proposition 4]).

If N is minimal, then for every Borel subset ∆ of C,
F (∆) = 0 if and only if E(∆) = 0.

(4.2)

According to [8, Proposition II.4.6]), the following holds.

Any subnormal operator is normaloid.(4.3)

We refer the reader to [8] for the foundations of the theory of subnormal operators.

Proposition 4.2. Let S ∈ B(H) be a subnormal operator, N ∈ B(K) be a minimal

normal extension of S and F be the semispectral measure of S. Then the following

assertions hold:

(i) if S is a contraction, then limn→∞ ‖Snh‖2 = 〈F (T)h, h〉 for every h ∈ H,

(ii) the following conditions are equivalent:

(ii-a) S is strongly stable, i.e., limn→∞ Snh = 0 for every h ∈ H,

(ii-b) S is power bounded and F (T) = 0,

(ii-c) S is a contraction and F (T) = 0,

(iii) S is strongly stable if and only if N is strongly stable.

Proof. (i) Suppose ‖S‖ 6 1. Then, by [8, Corollary II.2.17], ‖N‖ = ‖S‖ 6 1. It
follows from the spectral theorem that

‖Snh‖2 = ‖Nnh‖2
(4.1)
=

∫

D̄

|z|2n〈F (dz)h, h〉, n ∈ Z+, h ∈ H,

where D̄ = {z ∈ C : |z| 6 1}. Since for z ∈ D̄, the sequence {|z|2n}∞n=0 converges
to χT(z) as n → ∞, where χT is the characteristic function of T, we deduce from
Lebesgue’s dominated convergence theorem that (i) holds.

(ii) Since subnormal operators are normaloid (see (4.3)), the assertion (ii) follows
from (i) and Proposition 4.1.

(iii) Recall that ‖S‖ = ‖N‖, and also that F (T) = 0 if and only if E(T) = 0,
where E is the spectral measure of N (see (4.2)). Combined with (ii) applied to
both S and N , this yields (iii).
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We now estimate the growth of norms of powers of an algebraic operator whose
spectral radius is less than or equal to 1.

Proposition 4.3. Suppose that T ∈ B(H) is an algebraic operator such that 0 <

r(T ) 6 1. Then there exists α ∈ (0,∞) such that

‖T n‖ 6 αnκr(T )n, n > 1,(4.4)

where κ = (deg p) − 1 and p is the minimal polynomial of T .

Proof. Since r(T ) > 0, in light of Lemma 2.3 and its proof it suffices to consider
the case when (T − zI)i = 0 for some 1 6 i 6 deg p and for some z ∈ C such that
0 < |z| 6 1. Setting N = T − zI, it is easily seen that

T n = (zI + N)n =
i−1
∑

j=0

(

n

j

)

zn−jN j, n > i− 1,

which together with r(T ) = |z| implies that

‖T n‖ 6

i−1
∑

j=0

(

n

j

)

‖N j‖|z|n−j 6

( i−1
∑

j=0

‖N j‖

j!|z|j

)

ni−1r(T )n, n > i− 1.

This completes the proof.

Remark 4.4. a) It is worth mentioning that if T ∈ B(H) is an algebraic operator
such that r(T ) = 0, then, in view of Lemma 2.3, the estimate (4.4) still holds, but
only for n > deg p.

b) It follows from Gelfand’s formula for spectral radius that if T ∈ B(H) is
such that r(T ) < 1, then T is uniformly stable2) , i.e., limn→∞ ‖T n‖ = 0, and hence
the sequence {T nh}∞n=0 is convergent for every h ∈ H. The latter statement ceases
to be true if the spectrum of T has a nonempty intersection with T \ {1}, even if T
is algebraic. It could be even worse, namely, if T = zI, where z = e2πiθ and θ is an
irrational number, then by Jacobi’s theorem (see [10, Theorem I.3.13]) the closure
of the set {T nh : n ∈ Z+} is equal to {zh : z ∈ T} for every h ∈ H.

c) Note that if T ∈ B(H) is algebraic, then the sequence {‖T nh‖1/n}∞n=1 is
convergent in R+ for all h ∈ H (see [6, Proposition 6.2]). Without the assumption
that T is algebraic, the sequence {‖T nh‖1/n}∞n=1 may not converge. For more details
on this issue, we refer the reader to [9]. ♦

We conclude this section by providing an example illustrating Theorem 1.1 and
Proposition 4.1.

2) A more detailed discussion of this issue can be found in [16, Proposition 6.22].
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Example 4.5. Let N ∈ B(H) be a nonzero operator such that N2 = 0 and let
α ∈ T. Then the operator Tα := αI + N is algebraic because p(Tα) = 0 with
p(x) = (x − α)2. Hence, by the spectral mapping theorem σ(Tα) = {α} and so Tα

is invertible in B(H) and r(Tα) = 1. However ‖Tα‖ > 1 whenever ‖N‖ > 2 (this
can be achieved simply by rescaling N). As a consequence, Tα is not normaloid,
hence not subnormal (see (4.3)). Observe that H \ N (N) 6= ∅ and

lim
n→∞

‖T n
αh‖ = ∞ if and only if h ∈ H \ N (N).(4.5)

Indeed, by Newton’s binomial formula (or simply by induction), we have

(I + ᾱN)n = I + nᾱN, n ∈ Z+,

which implies that

‖(αI + N)nh‖2 = ‖h‖2 + 2nRe (α〈h,Nh〉) + n2‖Nh‖2, n ∈ Z+, h ∈ H.

This yields (4.5). Since H \ N (N) 6= ∅, we infer from (4.5) that Tα is not power
bounded. A simple example of this kind is H = C

2, N = [ 0 1
0 0 ] and α = 1. In this

particular case ‖T1‖ > 1 without rescaling. ♦
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