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Abstract. The stability of a class of Volterra-type difference equations that include a

generalized difference operator ∆a is investigated using Krasnoselskii’s fixed point theo-

rem and some results are obtained. In addition, some examples are given to illustrate our

theoretical results.

1. Introduction

Difference equations are the discrete analogues of differential equations and they
usually describe certain phenomena over the course of time. Difference equations
have many applications in a wide variety of disciplines, such as economics, math-
ematical biology, social sciences and physics. We refer to [1, 2, 4, 6] for the basic
theory and some applications of difference equations. Volterra difference equations
are extensively used to model phenomena in engineering, economics, and in the
natural and social sciences; their stability has been studied by many authors.

In [5], Khandaker and Raffoul considered a Volterra discrete system with non-
linear perturbation

x(n+ 1) = A(n)x(n) +

n∑
s=0

B(n, s)x(s) + g(n, x(n))

and obtained necessary and sufficient conditions for stability properties of the zero
solution employing the resolvent equation coupled with a variation of parameters
formula.

In [7], Migda et al. investigated the boundedness and asymptotic stability of
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the zero solution of the discrete Volterra equation

x(n+ 1) = a(n) + b(n)x(n) +

n∑
i=n0

K(n, i)x(i)

using fixed point theory.
In [3], Islam and Yankson studied the stability and boundedness of the nonlinear

difference equation

x(t+ 1) = a(t)x(t) + c(t)∆x(t− g(t)) + q(x(t), x(t− g(t)))

using fixed point theorems.
In [9], Yankson studied the asymptotic stability of the zero solution of the

Volterra difference delay equation

x(n+ 1) = a(n)x(n) + c(n)∆x(n− g(n)) +

n−1∑
s=n−g(n)

k(n, s)h (x(s))

using Krasnoselskii’s fixed point theorem.
In this paper, motivated by [9], we investigate the asymptotic stability of the

zero solution of neutral and Volterra type difference equations which include a
generalized difference operator of the form

(1.1) ∆a [x (n)− b (n)x (n− σ)] = c (n)x (n) +

n−1∑
u=n−σ

k(u, n)h (x (u) , x (u− τ))

using Krasnoselskii’s fixed point theorem. Here b(n) : Z → R and c(n) : Z → R
are discrete bounded functions, k(u, n) : Z× Z→ R+, h : R× R→ R, σ and τ are
non-negative integers with lim(n− σ) =∞ and lim(n− τ) =∞.

The difference operator ∆ and generalized difference operator ∆a are defined
as

∆x(n) = x(n+ 1)− x(n)

and

(1.2) ∆ax(n) = x(n+ 1)− ax(n), a > 0

respectively.
We assume that h(0, 0) = 0 and

(1.3) |h(x1, y1)− h(x2, y2)| ≤ K max {|x1 − x2| , |y1 − y2|}

for some positive constant K.
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2. Basic Definitions, Theorems and Lemmas

For any integer n0 ≥ 0 we define Z0 as the set of all integers in the interval
[−σ − τ, n0] . Let ω : Z0 → R be a discrete and bounded initial function.

Definition 2.1. x(n) = x(n, n0, ω) is a solution of (1.1) if x(n) = ω(n) for n ∈ Z0

and satisfies (1.1) for n ≥ n0.

Definition 2.2. The zero solution of (1.1) is stable if for any ε > 0 and any
integer n0 ≥ 0 there exists a δ = δ (ε) such that |ω(n)| < δ for n ∈ Z0 implies
|x(n, n0, ω)| < ε for n ≥ n0.

Definition 2.3. The zero solution of (1.1) is asymptotically stable if it is stable
and for any integer n0 ≥ 0 there exists a δ = δ (n0) such that |ω(n)| < δ for n ∈ Z0

implies lim
n→∞

x(n) = 0.

Lemma 2.1. Where the generalized difference operator ∆a is as defined in (1.2),
we have

∆ax(n) = an+1∆

(
x(n)

an

)
.

Proof. It is obvious. 2

Now below we state Krasnoselskii’s theorem. For the proof we refer to [8].

Theorem 2.1. Let M be a closed convex nonempty subset of a Banach space
(B, ‖.‖) . Suppose that A and Q map M into B such that

(i) x, y ∈M implies Ax+Qy ∈M ,

(ii) A is continuous and AM is contained in a compact set,

(iii) Q is a contraction mapping.

Then, there exits z ∈M with z = Az +Qz.

Theorem 2.2.(Ascoli-Arzela Theorem) Let (X, d) be a compact metric space and
C(X) be a vector space consisting of all continuous function f : X → R. A subset F
of C(X) is relatively compact if and only if F is equibounded and equicontinuous.

3. Main Results

Lemma 3.1. Assume that (a+ c(n)) 6= 0 for all n ∈ Z. Necessary and sufficient
condition for x (n) to be the solution of (1.1) are

x (n) = (x (n0)− b (n0)x (n0 − σ))

n−1∏
u=n0

(a+ c (u)) + b (n)x (n− σ)

+

n−1∑
r=n0

[
c (r) b (r)x (r − σ) +

r−1∑
u=r−σ

k (u, r)h (x (u) , x (u− τ))

]
n−1∏
s=r+1

(a+ c (s)) ,

n ≥ n0.
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Proof. From (1.1) we can write

∆ax (n)− c (n)x (n) = ∆a (b (n)x (n− σ))(3.1)

+

n−1∑
u=n−σ

k(u, n)h (x (u) , x (u− τ)) .

Using the definition of the operator ∆a in the left-hand side of (3.1) and multiplying

both sides of (3.1) with
n∏

s=n0

(a+ c(s))
−1

we have

∆

(
x (n)

n−1∏
s=n0

(a+ c(s))−1

)
(3.2)

=

[
∆a (b (n)x (n− σ)) +

n−1∑
u=n−σ

k(u, n)h (x (u) , x (u− τ))

]
n∏

s=n0

(a+ c(s))−1 .

By summing both sides of (3.2) from n0 to n− 1, we obtain

x (n)

n−1∏
s=n0

(a+ c(s))
−1

= x (n0) +

n−1∑
r=n0

[
∆a (b (n)x (n− σ))

+

n−1∑
u=n−σ

k(u, n)h (x (u) , x (u− τ))

]
r∏

s=n0

(a+ c(s))
−1

from this last equality, we write

x (n) = x (n0)

n−1∏
s=n0

(a+ c(s)) +

{
n−1∑
r=n0

[
∆a (b (r)x (r − σ))

+

r−1∑
u=r−σ

k(u, r)h (x (u) , x (u− τ))

]
r∏

s=n0

(a+ c(s))
−1

}
n−1∏
s=n0

(a+ c(s)) .

Because
r∏

s=n0

(a+ c(s))
−1

n−1∏
s=n0

(a+ c(s)) =

n−1∏
s=r+1

(a+ c(s)) ,

we can write

x (n) = x (n0)

n−1∏
s=n0

(a+ c(s)) +

n−1∑
r=n0

[
∆a (b (r)x (r − σ))

+

r−1∑
u=r−σ

k(u, r)h (x (u) , x (u− τ))

]
n−1∏
s=r+1

(a+ c(s))
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or

x (n) = x (n0)

n−1∏
s=n0

(a+ c(s))

+

n−1∑
r=n0

∆a (b (r)x (r − σ))

n−1∏
s=r+1

(a+ c(s))(3.3)

+

n−1∑
r=n0

[
r−1∑

u=r−σ
k(u, r)h (x (u) , x (u− τ))

]
n−1∏
s=r+1

(a+ c(s)) .

Now, using Lemma 2.1 in the second term on the right-hand side of (3.3), we have

n−1∑
r=n0

∆a (b (r)x (r − σ))

n−1∏
s=r+1

(a+ c(s))

=

n−1∑
r=n0

ar+1∆

(
b (r)x (r − σ)

ar

) n−1∏
s=r+1

(a+ c(s))

=

n−1∑
r=n0

[
∆

(
b (r)x (r − σ)

n−1∏
s=r

(a+ c(s))

)
−∆

(
n−1∏
s=r

(a+ c(s)) ar

)
b (r)x (r − σ)

ar

]

=

∣∣∣∣∣b (r)x (r − σ)

n−1∏
s=r

(a+ c(s))

∣∣∣∣∣
r=n

r=n0

−
n−1∑
r=n0

[
∆

(
n−1∏
s=r

(a+ c(s)) ar

)
b (r)x (r − σ)

ar

]

= b (n)x (n− σ)− b (n0)x (n0 − σ)

n−1∏
s=n0

(a+ c(s))

−
n−1∑
r=n0

[
∆

(
n−1∏
s=r

(a+ c(s)) ar

)
b (r)x (r − σ)

ar

]
.

Hence, by putting this last equality in (3.3), we reach

x (n) = x (n0)

n−1∏
s=n0

(a+ c(s))

+

n−1∑
r=n0

[
r−1∑

u=r−σ
k(u, r)h (x (u) , x (u− τ))

]
n−1∏
s=r+1

(a+ c(s))(3.4)

+ b (n)x (n− σ)− b (n0)x (n0 − σ)

n−1∏
s=n0

(a+ c(s))

−
n−1∑
r=n0

[
∆

(
n−1∏
s=r

(a+ c(s)) ar

)
b (r)x (r − σ)

ar

]
.
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Because in the last term on the right-hand side of (3.4)

∆

(
n−1∏
s=r

(a+ c(s)) ar

)
=

n−1∏
s=r+1

(a+ c(s)) ar+1 −
n−1∏
s=r

(a+ c(s)) ar

= −c(r)
n−1∏
s=r+1

(a+ c(s)) ar,

from (3.4) we obtain

x (n) = [x (n0)− b (n0)x (n0 − σ)]

n−1∏
s=n0

(a+ c(s)) + b (n)x (n− σ)

+

n−1∑
r=n0

[
c(r)b(r)x(r − σ)

+

r−1∑
u=r−σ

k(u, r)h (x (u) , x (u− τ))

]
n−1∏
s=r+1

(a+ c(s)) , n ≥ n0.

This completes the proof. 2

Now let φ(n) be a real sequence defined on Z and define the set S as

S = {φ : Z→ R | ‖φ‖ → 0, n→∞}

where
‖φ‖ = max |φ(n)| , n ∈ Z.

Then, we can see that (S, ‖.‖) is a Banach space. We then define the mapping
H : S → S on Z0 by

(Hφ) (n) = ω (n)

and for n ≥ n0 by

(Hφ) (n) = [ω (n0)− b (n0)ω (n0 − σ)]

n−1∏
s=n0

(a+ c(s))

+ b (n)φ (n− σ) +

n−1∑
r=n0

[
c(r)b(r)φ(r − σ)(3.5)

+

r−1∑
u=r−σ

k(u, r)h (φ (u) , φ (u− τ))

]
n−1∏
s=r+1

(a+ c(s)) .

Lemma 3.2. Let (1.3) hold. Suppose that

(3.6)

n−1∏
s=n0

(a+ c(s))→ 0 as n→∞
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and there exists α ∈ (0, 1) such that for n ≥ n0

(3.7)

n−1∑
r=n0

[
|c(r)b(r)|+K

r−1∑
u=r−σ

k(u, r)

] ∣∣∣∣∣
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣ ≤ α.
The mapping H defined by (3.5) approaches 0 as n→∞ .

Proof. Due to the condition (3.6) the first term of right-hand side of equation (3.5)
approaches to zero as n→∞. Because b(n) is bounded and φ ∈ S is also the second
term of right-hand side of equation (3.5) approaches to zero as n → ∞. Now, we
show that the last term on the right-hand side of equation (3.5) approaches to zero
as n→∞.

Given ε1 > 0 and let n1 be a positive integer such that for n > n1 and φ ∈ S ,
|φ(n− σ)| < ε1. Because φ(n−σ)→ 0, for given ε2 > 0 we can find a n2 > n1 such
that for n > n2 |φ(n− σ)| < ε2. Furthermore, because of condition (3.6) we can

find a n3 > n2 such that for n > n3

∣∣∣∣ n−1∏
s=n2

(a+ c(s))

∣∣∣∣ < ε2
αε1

.

Hence, for n > n3 from the last term of right-hand side of (3.5) we have

∣∣∣∣∣
n−1∑
r=n0

[
c(r)b(r)φ(r − σ) +

r−1∑
u=r−σ

k(u, r)h (φ (u) , φ (u− τ))

]
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
≤

n−1∑
r=n0

∣∣∣∣∣
[
c(r)b(r)φ(r − σ) +

r−1∑
u=r−σ

k(u, r)h (φ (u) , φ (u− τ))

]
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
≤

n2−1∑
r=n0

∣∣∣∣∣
[
c(r)b(r)φ(r − σ) +

r−1∑
u=r−σ

k(u, r)h (φ (u) , φ (u− τ))

]
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
+

n−1∑
r=n2

∣∣∣∣∣
[
c(r)b(r)φ(r − σ) +

r−1∑
u=r−σ

k(u, r)h (φ (u) , φ (u− τ))

]
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
≤ ε1

n2−1∑
r=n0

[
|c(r)b(r)|+K

r−1∑
u=r−σ

k(u, r)

] ∣∣∣∣∣
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
+ ε2

n−1∑
r=n0

[
|c(r)b(r)|+K

r−1∑
u=r−σ

k(u, r)

] ∣∣∣∣∣
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
= ε1

n2−1∑
r=n0

[
|c(r)b(r)|+K

r−1∑
u=r−σ

k(u, r)

] ∣∣∣∣∣
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣+ ε2α

= ε1

n2−1∑
r=n0

[
|c(r)b(r)|+K

r−1∑
u=r−σ

k(u, r)

] ∣∣∣∣∣
n2−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
∣∣∣∣∣
n−1∏
s=n2

(a+ c(s))

∣∣∣∣∣+ ε2α
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≤ ε1α

∣∣∣∣∣
n−1∏
s=n2

(a+ c(s))

∣∣∣∣∣+ ε2α

≤ ε2(1 + α).

This completes the proof. 2

To use Krasnoselskii’s theorem, we construct two mappings Q and A expressing
(3.5) as

(Hφ) (n) = (Qφ) (n) + (Aφ) (n)

where Q, A : S → S are mappings with

(3.8) (Qφ) (n) = [ω (n0)− b (n0)ω (n0 − σ)]

n−1∏
s=n0

(a+ c(s)) + b (n)φ (n− σ)

and

(Aφ) (n) =

n−1∑
r=n0

[c(r)b(r)φ(r − σ)(3.9)

+

r−1∑
u=r−σ

k(u, r)h (φ (u) , φ (u− τ))

]
n−1∏
s=r+1

(a+ c(s))

respectively.

Lemma 3.3. Assume that (1.3) , (3.6) and (3.7) hold and suppose that there exists
a positive constant ξ such that

(3.10) a+ c(n) ≤ 1 and max
n∈Z
|a+ c(n)| = ξ

Then, the mapping A defined by (3.9) is continuous and compact.

Proof. First, we show that the mapping A defined by (3.9) is continuous. Let φ,

φ ∈ S. For a given ε > 0 choose δ = ε
α such that

∥∥∥φ− φ∥∥∥ < δ holds. Then, we have∥∥(Aφ)−
(
Aφ
)∥∥

= max
n∈Z

∣∣∣∣∣
{
n−1∑
r=n0

[
c(r)b(r)φ(r − σ) +

r−1∑
u=r−σ

k(u, r)h (φ (u) , φ (u− τ))

]
n−1∏
s=r+1

(a+ c(s))

}

−

{
n−1∑
r=n0

[
c(r)b(r)φ(r − σ) +

r−1∑
u=r−σ

k(u, r)h
(
φ (u) , φ (u− τ)

)] n−1∏
s=r+1

(a+ c(s))

}∣∣∣∣∣
≤

n−1∑
r=n0

[
|c(r)b(r)|

∣∣φ(r − σ)− φ(r − σ)
∣∣] ∣∣∣∣∣

n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
+

n−1∑
r=n0

∣∣∣∣∣
r−1∑

u=r−σ
k(u, r)h (φ (u) , φ (u− τ))
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−
r−1∑

u=r−σ
k(u, r)h

(
φ (u) , φ (u− τ)

)∣∣∣∣∣
∣∣∣∣∣
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
≤

n−1∑
r=n0

|c(r)b(r)|

∣∣∣∣∣
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣ ∥∥∥φ− φ∥∥∥
+

n−1∑
r=n0

∣∣∣∣∣
r−1∑

u=r−σ
k(u, r)

[
h (φ (u) , φ (u− τ))− h

(
φ (u) , φ (u− τ)

)]∣∣∣∣∣
∣∣∣∣∣
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
≤

n−1∑
r=n0

[
|c(r)b(r)|+K

r−1∑
u=r−σ

k(u, r)

] ∣∣∣∣∣
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣ ∥∥∥φ− φ∥∥∥
≤ α

∥∥∥φ− φ∥∥∥ ≤ ε
which shows that the mapping A is continuous. Now we show that A is compact.
For this we use Arzela-Ascoli theorem. Let {φn} ⊂ S be a sequence of uniformly
bounded functions where ‖φn‖ ≤ m for m > 0 and n is a positive integer. Then
using (1.3) we have

‖Aφn‖

= max
n∈Z

∣∣∣∣∣
n−1∑
r=n0

[
c(r)b(r)φ(r − σ) +

r−1∑
u=r−σ

k(u, r)h (φ (u) , φ (u− τ))

]
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
≤

n−1∑
r=n0

∣∣∣∣∣
[
c(r)b(r)φ(r − σ) +

r−1∑
u=r−σ

k(u, r)h (φ (u) , φ (u− τ))

]
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
≤

n−1∑
r=n0

∣∣∣∣∣
[
|c(r)b(r)|+ L

r−1∑
u=r−σ

k(u, r)

]∣∣∣∣∣
∣∣∣∣∣
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣ ‖φ‖
≤ α ‖φ‖ ≤ αm

which shows that (Aφn) is uniformly bounded. Furthermore,

‖∆ (Aφ)‖
= max

n∈Z
|(Aφ) (n+ 1)− (Aφ) (n)|

≤ |a+ c(n)|

∣∣∣∣∣c(n)b(n)φ(n− σ) +

n−1∑
u=n−σ

k(u, r)h (φ (u) , φ (u− τ))

∣∣∣∣∣
∣∣∣∣∣
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
≤ ξ

(
|c(n)b(n)|+K

n−1∑
u=n−σ

k(u, r)

)
‖φ‖

≤ ξαm ≤ γ

for some positive constant γ. This shows that (Aφn) is equi-continuous. Hence, by
Arzela-Ascoli’s theorem, the mapping A is compact. 2
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Lemma 3.4. Consider the mapping Q defined by (3.8) and assume that

(3.11) |b(n)| ≤ µ < 1

holds for some positive constant µ. Then, Q is a contraction.

Proof. Take any two functions φ, φ ∈ S. We then have

∥∥(Qφ)−
(
Qφ
)∥∥ = max

n∈Z

∣∣∣∣∣[ω (n0)− b (n0)ω (n0 − σ)]

n−1∏
s=n0

(a+ c(s)) + b (n)φ (n− σ)

− [ω (n0)− b (n0)ω (n0 − σ)]

n−1∏
s=n0

(a+ c(s))− b (n)φ (n− σ)

∣∣∣∣∣
≤ |b(n)|

∥∥φ− φ∥∥ ≤ µ∥∥φ− φ∥∥
which shows that Q is a contraction mapping. 2

Theorem 3.1. Suppose that (1.3), (3.6), (3.7), (3.10) and (3.11) hold. Also suppose
that there exists positive constants c and β ∈ (0, 1) such that

(3.12)

∣∣∣∣∣
n−1∏
s=n0

(a+ c(s))

∣∣∣∣∣ ≤ c
and

(3.13) |b(n)|+
n−1∑
r=n0

[
|c(r)b(r)|+K

r−1∑
u=r−σ

k(u, r)

] ∣∣∣∣∣
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣ ≤ β, n ≥ n0
hold. Then, the zero solution of (1.1) is asymptotically stable.

Proof. Given ε > 0. Choose δ such that

|1− b(n0)| δc < ε(1− β)

Let ω be a given initial function such that |ω(n)| < δ. Let us define the set M as

M = {φ ∈ S : ‖φ‖ < ε}

and take any φ, ϕ ∈M . Then, we have

‖(Qϕ) + (Aφ)‖

= max
n∈Z

∣∣∣∣∣[ω (n0)− b (n0)ω (n0 − σ)]

n−1∏
u=n0

(a+ c(u)) + b (n)ϕ (n− σ)

+

n−1∑
r=n0

[
c(r)b(r)φ(r − σ) +

r−1∑
u=r−σ

k(u, r)h (φ (u) , φ (u− τ))

]
n−1∏
s=r+1

(a+ c(s))

∣∣∣∣∣
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≤

∣∣∣∣∣[ω (n0)− b (n0)ω (n0 − σ)]

n−1∏
u=n0

(a+ c (u))

∣∣∣∣∣+ |b (n)ϕ (n− σ)|

+

n−1∑
r=n0

∣∣∣∣∣
[
c (r) b (r)φ (r − σ) +

r−1∑
u=r−σ

k (u, r)h (φ (u) , φ (u− τ))

]
n−1∏
s=r+1

(a+ c (s))

∣∣∣∣∣
≤ |1− b(n0)| δc+ |b(n)| ε+ ε

n−1∑
r=n0

[
|c (r) b (r)|+K

r−1∑
u=r−σ

k (u, r)

] ∣∣∣∣∣
n−1∏
s=r+1

(a+ c (s))

∣∣∣∣∣
≤ |1− b(n0)| δc+

{
|b(n)|+

n−1∑
r=n0

[
|c (r) b (r)|+K

r−1∑
u=r−σ

k (u, r)

] ∣∣∣∣∣
n−1∏
s=r+1

(a+ c (s))

∣∣∣∣∣
}
ε

≤ |1− b(n0)| δc+ βε

< ε

which shows that (Qϕ) + (Aφ) ∈M.
By the last result, Lemma 4 and Lemma 5 all conditions of Theorem 1 are

satisfied on M . Consequently, there exits a fixed point x ∈M such that x = Qx+Ax
holds. Lemma 2 implies that this fixed point x(n) is a solution of (1.1). Furthermore
the solution x(n) is stable because ‖x‖ < ε for a given ε > 0. By Lemma 3 the
solution x(n) is asymptotically stable. 2

Example 3.1. Consider the difference equation

∆2

[
x (n)− 1

32 (n+ 1)!
x (n− 2)

]
(3.14)

= − 2n

n+ 1
x (n) +

n−1∑
u=n−2

2n

16 (n+ 1)! (u2 + 4)
h (x (u) , x (u− 3)) , n ≥ 1

Here,

a = σ = 2, τ = 3, n0 = 1,

c(n) = − 2n

n+ 1
, b(n) =

1

32 (n+ 1)!
,

K(u, n) =
2n

16 (n+ 1)! (u2 + 4)
.

We see that
n−1∏
s=1

(
2− 2n

n+ 1

)
=

2n−1

n!
→ 0 as n→∞,

so (3.6) holds. Because

n−1∑
r=1

[
2r

r + 1

1

32 (n+ 1)!
+

r−1∑
u=r−2

2r

16 (r + 1)! (u2 + 4)

] ∣∣∣∣∣
n−1∏
s=r+1

(
2

s+ 1

)∣∣∣∣∣ ≤ 3

16
< 1,
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(3.7) holds. Because

a+ c(n) = 2− 2n

n+ 1
≤ 1 and max

n∈Z
|a+ c(n)| = max

n∈Z

∣∣∣∣2− 2n

n+ 1

∣∣∣∣ = 1

(3.10) holds. Because ∣∣∣∣ 1

32 (n+ 1)!

∣∣∣∣ ≤ 1

32
< 1,

(3.11) holds. Because∣∣∣∣∣
n−1∏
s=1

(
2− 2s

s+ 1
)

)∣∣∣∣∣ =

∣∣∣∣∣
n−1∏
s=1

(
2

s+ 1
)

)∣∣∣∣∣ ≤ 1,

(3.12) holds. Also, because∣∣∣∣ 1

32 (n+ 1)!

∣∣∣∣+

n−1∑
r=1

[
2r

r + 1

1

32 (n+ 1)!

+

r−1∑
u=r−2

2r

16 (r + 1)! (u2 + 4)

] ∣∣∣∣∣
n−1∏
s=r+1

(
2

s+ 1

)∣∣∣∣∣ ≤ 13

64
< 1,

(3.13) holds. So, by Theorem 3 the zero solution of (3.14) is asymptotically stable.
The solution is of the form

x (n) =

(
x (1)− 1

64
x (−1)

) n−1∏
u=1

(
2− 2u

u+ 1

)
+

1

32 (n+ 1)!
x (n− 2)

+

n−1∑
r=1

[
− 2r

r + 1

1

32 (r + 1)!
x (r − 2)

+

r−1∑
u=r−2

2r

16 (r + 1)! (u2 + 4)
h (x (u) , x (u− 3))

]
n−1∏
s=r+1

(
2− 2s

s+ 1

)
,

n ≥ 1.
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