• Title/Summary/Keyword: Operational delay

Search Result 158, Processing Time 0.026 seconds

A Study on the Design of Hardware Switching Mechanism using TCP/IP Communication (TCP/IP를 이용한 하드웨어 전환장치 설계에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Lim, Sang-Soo;Ahn, Jong-Min;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.694-702
    • /
    • 2007
  • The SSWM(Software Switching Mechanism) of I-processor concept using non-real time in-house software simulation program is an effective method in order to develop the flight control law in desktop or HQS environment. And, this system has some advantages compare to HSWM(Hardware Switching Mechanism) such as remove the time delay effectiveness and reduce the costs of development. But, if this system loading to the OFP(Operational Flight Program), the OFP guarantee the enough throughput in order to calculate the two control law at once. Therefore, the HSWM(Hardware Switching Mechanism) of 2-processor concept is necessary. This paper addresses the concept of HSWM of the HQS-PC interface using TCP/IP(Transmission Control Protocol/Internet Protocol) communication based on flight control law of advanced supersonic trainer. And, the fader logic of TFS(Transient Free Switch) and stand-by mode of reset '0' type are designed in order to reduce the abrupt transient response and minimize the integrator effect in pitch axis. The result of the analysis based on HQS pilot simulation using HSWM reveals that the flight control systems are switching between two computers without any problem.

Development of Real-Time Decision Support System for the Efficient Berth Operation of Inchon Port (인천항의 효율적 선석운영을 위한 실시간 의사결정지원시스템 구축)

  • 유재성
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.12-16
    • /
    • 1998
  • The purpose of this paper is to develop a knowledge-based real-time decision support system to support decision makers for efficient berth operation of Inchon Port. In these days, the efficient berth operation has been many studied. The berth operation rules differ from port to port and the problem is highly dependent on natural, geographical and operational environment of port. In Inchon Port, the ship's entrance into port and departure from port is extremely affected by the status of dock and berth because of capacity restriction. First, we analyzed the specific characteristics of Inchon Port such as dock based on the data of 1997. And then, we construct the database of experts knowledge for berth utilization. Finally, we build the real-time decision support system for the efficient berth operation of Inchon Port to make the better berth allocation in case of not only regular scheduling but also dynamic scheduling such as delay in berth operation and exchange of ship between berths. The DSS is developed with graphic user interface(GUI) concept to help the user determining user interactive updating of the port status. Then this DSS will be provide decision maker with an efficient and fast way to berth allocation, and reduce wastes of time, space, and manpower in Inchon Port operation.

  • PDF

Development of Real-Time Decision Support System for the Efficient Berth Operation of Inchon Port (인천항의 효율적 선석운영을 위한 실시간 의사결정지원시스템 구축)

  • 유재성;김동희;김봉선;이창호
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.189-198
    • /
    • 1999
  • The purpose of this paper is to develop a knowledge-based real-time decision support system to support decision makers for efficient berth operation of Inchon Port. In these days the berth operation problems have been many studied. The berth operation rules differ from port to port and the problem is highly dependent on natural geographical and operational environment of port. In Inchon Port the ship’s entrance into port and departure from port is extremely affected status of dock. In this paper we analyzed some effects of dock a specific character of Inchon Port with a real data of ship’s in Inchon Port. And reconstruct a previous expert’s knowledge of berth allocating problem in Inchon Port. Also the mechanism for the efficient berth operation has been studied by repeatedly dispatching in order to obtain a best effect of berth allocation, with real-time updated information for delay at service time of a specific berth and changing of a working-berth. The system is developed with graphic user interface(GUI) concept using user interactive approach. And this system will be provide decision support maker with an efficient and fast way to berth allocating and reduce wastes of time space and manpower in Inchon Port operation.

  • PDF

A Study on Evaluation of Portal Vein by Utilizing MIP Reconstruction in the PC Environment after Abdomen CT of Hepatic Artery Embolization Patients (간동맥 색전술 환자의 복부단층촬영 후 PC 환경에서 MIP재구성영상을 이용한 간문맥평가에 관한 고찰)

  • Kim, Young-Keun;Jang, Young-Ill;Heo, Young-Nam
    • Journal of radiological science and technology
    • /
    • v.24 no.2
    • /
    • pp.13-17
    • /
    • 2001
  • When most patients are diagnosed with the quiet progressed hepatoma which often would make the operation impossible, the Interventional Radiology hepatic artery embolization is an extremely useful method for such patients. An existence of the malfunction is evaluated by gaining a portal vein image as a delayed phase image after injecting a contrast media into the superior mesenteric artery. However, it is difficult to make a definite judgement due to the extended exposure time with the peristalsis and the intestine gas obstructing the sharpness of the image when the Patient exposure time increases and due to the increased usage of contrast media and its side effect. The portal vein can be evaluated by obtaining the MIP image after reconstructing a 3-dimensional personal computer setting using the 2-dimensional from an enhancement abdomen CT image that is almost a requisite in operation to a hepatoma patient. Such method nay prevent a decrease in the quality of image based upon the time delay and intestine gas; also, because the patient exposure dose and contrast media usage may be reduced, it is a new, valuable way to decide the operational matter of hepatic artery embolization on a pre-angiography.

  • PDF

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.

An Analysis of Optimum Transmission Range in MANETs under various Propagation Models (다양한 전파 환경 하에서 MANET 최적 통달거리 분석)

  • Choi, Hyungseok;Lee, JaeYong;Kim, ByungChul
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • This paper presents an analytical method for finding the optimum transmission range in mobile ad hoc networks(MANETs). The results are particularly useful for the operation of military networks, as the transmission range affects the throughput, delay, and battery consumption. Plus, the proposed method allows the optimum transmission range to be determined in advance when deploying combatants with mobile terminals. And we analyze the battery life-time and the optimum transmission range under various propagation scenarios based on Hata propagation model. The proposed method obtains the optimum transmission range in a MANET based on the operational conditions.

Performance Estimation for Shipboard Directional Pedestal by Using M&S Methodologies (M&S기법을 활용한 선박용 지향성 요동보상장치 성능 분석)

  • Lee, Sungkyun;Go, Jinyong;Han, Yongsu;Kim, Changhwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.297-303
    • /
    • 2018
  • Recently, the tasks assigned to surface ship are becoming diverse and important. In this trend, shipboard directional pedestals are widely used for surveillance and electronic warfare because ships are always under angular motion such as rolling, pitching and yawing. To estimate the performance of pedestal, the motion responses of vessel as well as mechanical characteristics of pedestal should be considered. In this study, both the motion responses of vessel which the pedestal will be mounted and the behavior of 3-axis pedestal are considered. Numerical analysis based on potential theory is used to obtained motion characteristics of vessel and then 6-DOF motions of vessel are simulated under operational condition. 1st-order time delay model and LQR control algorithm are used for modeling of pedestal drive model and control model, respectively. By using coordinate transform, the angular motions which the pedestal should compensate are calculated from the vessel's angular motion. Through these M&S methodologies, time history of pedestal behavior and maximum angular error of each pedestal axis are obtained. Overall M&S results show that 3-axis pedestal compensate the angular motion induced by vessel, efficiently.

A Study for Estimation of Benefit from Upgrading Precision Approach Runway Category (정밀접근활주로 등급 상향에 따른 편익산정에 관한 연구)

  • Kim, HuiYang;Kweon, PilJe;Park, JangHoon;Baik, HoJong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.3
    • /
    • pp.70-81
    • /
    • 2019
  • The effects of weather on aircraft operations are predominant. In particular, severe weather, such as fog, strong winds, rainfall and snow, can cause delays, diversion or cancellation of operations. Of these, fog is considered the main reason for restricting aircraft operations. Meanwhile, Precision instrument approach using instrument landing system(ILS) has allowed aircraft to land safely even in situations where visibility is limited. However, the precision instrument approach require not only the performance of the aircraft but also the enhancement of the runway. In November 2018, Gimpo international Airport raised the category of the runway 14R from CAT-IIIa to CAT-IIIb to improve aviation safety and operational efficiency. Based on this, the research presented a methodology for estimating benefits according to the category upgrade of the precision approach runway, and estimated the benefits to Gimpo International Airport based on the methodology presented.

Design of the Procurement Engineering Support System : A Case Study (구매엔지니어링 관리지원시스템 상세 설계 사례 연구)

  • Kim, Jinil;Yeom, Choongsub;Shin, Joonguk;Salim, Shelly
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • This paper is based on the interim result of ongoing research and development project to develop a software system which support procurement activities, namely PeMSS (Procurement Engineering Management Support System). PeMSS is a system that enables development requirements for each equipment and help designing equipment meeting the purchase requirements. Procurement at EPC (Engineering Procurement and Construction) and operational stage of a plant is an important area that determines the integrity and profitability of the plant. Procurement of unsuitable equipment due to selection of suppliers that do not meet or omit critical requirements in purchase specification can result in enormous cost increase due to such as delay in EPC project, unsatisfactory performance and reduced plant operation time. In spite of the importance of the procurement engineering, there is a lack of support system for systematic preparation of purchase specification, so development of the procurement specification is basically relying on the experience of the engineers in charge. Accordingly, it is needed to develop the PeMSS to help procurement engineers develop procurement specification based on systems engineering approach. This paper introduces the design of the PeMSS.

Multi-functional Fighter Radar Scheduling Method for Interleaved Mode Operation of Airborne and Ground Target (전투기탑재 다기능 레이다의 공대공 및 공대지 동시 운용 모드를 위한 스케줄링 기법)

  • Kim, Do-Un;Lee, Woo-Cheol;Choi, Han-Lim;Park, Joontae;Park, Junehyune;Seo, JeongJik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.581-588
    • /
    • 2021
  • This paper deals with a beam scheduling method in fighter interleaving mode. Not only the priority of tasks but also operational requirements that air-to-ground and air-to-air search tasks should be executed alternatively are established to maximize high-quality of situational awareness. We propose a real-time heuristic beam scheduling method that is advanced from WMDD to satisfies the requirements. The proposed scheduling method is implemented in a simulation environment resembling the task processing mechanism and measurement model of a radar. Performance improvement in terms of task delay time is observed.