• Title/Summary/Keyword: Omega theorem

Search Result 65, Processing Time 0.02 seconds

THE COHEN TYPE THEOREM FOR S-⁎ω-PRINCIPAL IDEAL DOMAINS

  • Lim, Jung Wook
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.571-575
    • /
    • 2018
  • Let D be an integral domain, ${\ast}$ a star-operation on D, and S a (not necessarily saturated) multiplicative subset of D. In this article, we prove the Cohen type theorem for $S-{\ast}_{\omega}$-principal ideal domains, which states that D is an $S-{\ast}_{\omega}$-principal ideal domain if and only if every nonzero prime ideal of D (disjoint from S) is $S-{\ast}_{\omega}$-principal.

AN ANALOGUE OF WIENER MEASURE AND ITS APPLICATIONS

  • Im, Man-Kyu;Ryu, Kun-Sik
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.801-819
    • /
    • 2002
  • In this note, we establish a translation theorem in an analogue of Wiener space (C[0,t],$\omega$$\phi$) and find formulas for the conditional $\omega$$\phi$-integral given by the condition X(x) = (x(to), x(t$_1$),…, x(t$_{n}$)) which is the generalization of Chang and Chang's results in 1984. Moreover, we prove a translation theorem for the conditional $\omega$$\phi$-integral.l.

SEMI-QUASITRIANGULARITY OF TOEPLITZ OPERATORS WITH QUASICONTINUOUS SYMBOLS

  • Kim, In-Hyoun;Lee, Woo-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • In this note we show that if $T_{\varphi}$ is a Toeplitz operator with quasicontinuous symbol $\varphi$, if $\omega$ is an open set containing the spectrum $\sigma(T_\varphi)$, and if $H(\omega)$ denotes the set of analytic fuctions defined on $\omege$, then the following statements are equivalent: (a) $T_\varphi$ is semi-quasitriangular. (b) Browder's theorem holds for $f(T_\varphi)$ for every $f \in H(\omega)$. (c) Weyl's theorem holds for $f(T_\varphi)$ for every $f \in H(\omega)$. (d) $\sigma(T_{f \circ \varphi}) = f(\sigma(T_varphi))$ for every $f \in H(\omega)$.

  • PDF

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

A SIMPLE PROOF OF HILBERT BASIS THEOREM FOR *ω-NOETHERIAN DOMAINS

  • Lim, Jung Wook;Oh, Dong Yeol
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.197-201
    • /
    • 2013
  • Let D be an integral domain with quotient field K, * a star-operation on D, $GV^*(D)$ the set of nonzero finitely generated ideals J of D such that $J_*=D$, and $*_{\omega}$ a star-operation on D defined by $I_{*_{\omega}}=\{x{\in}K{\mid}Jx{\subseteq}I\;for\;some\;J{\in}GV^*(D)\}$ for all nonzero fractional ideals I of D. In this article, we give a simple proof of Hilbert basis theorem for $*_{\omega}$-Noetherian domains.

AN EXTENSION OF THE FUGLEDGE-PUTNAM THEOREM TO $\omega$-HYPONORMAL OPERATORS

  • Cha, Hyung Koo
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.273-277
    • /
    • 2003
  • The Fuglede-Putnam Theorem is that if A and B are normal operators and X is an operator such that AX = XB, then $A^{\ast}= X. In this paper, we show that if A is $\omega$-hyponormal and $B^{\ast}$ is invertible $\omega$-hyponormal such that AX = XB for a Hilbert-Schmidt operator X, then $A^{\ast}X = XB^{\ast}$.

  • PDF

EXISTENCE OF NONTRIVIAL SOLUTIONS OF A NONLINEAR BIHARMONIC EQUATION

  • Jin, Yinghua;Choi, Q-Heung;Wang, Xuechun
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.451-460
    • /
    • 2009
  • We consider the existence of solutions of a nonlinear biharmonic equation with Dirichlet boundary condition, ${\Delta}^2u+c{\Delta}u=f(x, u)$ in ${\Omega}$, where ${\Omega}$ is a bounded open set in $R^N$ with smooth boundary ${\partial}{\Omega}$. We obtain two new results by linking theorem.

  • PDF

EXISTENCE OF SOLUTIONS FOR GRADIENT TYPE ELLIPTIC SYSTEMS WITH LINKING METHODS

  • Jin, Yinghua;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.65-70
    • /
    • 2007
  • We study the existence of nontrivial solutions of the Gradient type Dirichlet boundary value problem for elliptic systems of the form $-{\Delta}U(x)={\nabla}F(x,U(x)),x{\in}{\Omega}$, where ${\Omega}{\subset}R^N(N{\geq}1)$ is a bounded regular domain and U = (u, v) : ${\Omega}{\rightarrow}R^2$. To study the system we use the liking theorem on product space.

  • PDF