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THE COHEN TYPE THEOREM

FOR S-∗w-PRINCIPAL IDEAL DOMAINS

Jung Wook Lim

Abstract. Let D be an integral domain, ∗ a star-operation on D, and

S a (not necessarily saturated) multiplicative subset of D. In this article,

we prove the Cohen type theorem for S-∗w-principal ideal domains, which
states that D is an S-∗w-principal ideal domain if and only if every nonzero

prime ideal of D (disjoint from S) is S-∗w-principal.

1. Introduction

For the sake of clarity, we first review some terminologies for star-operations.
Let D be an integral domain with quotient field K and F(D) the set of nonzero
fractional ideals of D. A star-operation on D is a mapping I 7→ I∗ from F(D)
into itself which satisfies the following three conditions for all 0 6= a ∈ K and
all I, J ∈ F(D):

(1) (a)∗ = (a) and (aI)∗ = aI∗;
(2) I ⊆ I∗, and if I ⊆ J , then I∗ ⊆ J∗; and
(3) (I∗)∗ = I∗.

The most important examples of star-operations are the d-operation, v-operation,
and w-operation. The d-operation is the identity mapping, i.e., I 7→ Id := I.
For an I ∈ F(D), set I−1 = {a ∈ K | aI ⊆ D}. The v-operation is the
mapping defined by I 7→ Iv := (I−1)−1. The w-operation is the mapping
defined by I 7→ Iw := {a ∈ K | Ja ⊆ I for some finitely generated ideal J
of D with Jv = D}. Let ∗ be a star-operation on D. Then ∗ induces a
new star-operation ∗w on D. The ∗w-operation is the mapping defined by
I 7→ I∗w := {a ∈ K | Ja ⊆ I for some J ∈ GV∗(D)}, where GV∗(D) is the
set of nonzero finitely generated ideals J of D with J∗ = D. (We call an ele-
ment J of GV∗(D) a ∗-Glaz-Vasconcelos ideal (∗-GV-ideal) of D.) When ∗ = d
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(resp., ∗ = v), the ∗w-operation is precisely the same as the d-operation (resp.,
w-operation).

Let D be an integral domain, ∗ a star-operation on D, and S a (not neces-
sarily saturated) multiplicative subset of D. In [1, Definition 1], Anderson and
Dumitrescu introduced the notion of S-principal ideal domains. They defined
an ideal I of D to be S-principal if there exist an element s ∈ S and a principal
ideal (c) of D such that sI ⊆ (c) ⊆ I; and the domain D to be an S-principal
ideal domain (S-PID) if each ideal of D is S-principal. In [4, Section 1], the
authors studied the w-operation analogue of S-PIDs. They defined a nonzero
ideal I of D to be S-w-principal if there exist an element s ∈ S and a principal
ideal (c) of D such that sI ⊆ (c) ⊆ Iw; and the domain D to be an S-unique
factorization domain (S-UFD) (or S-factorial domain) if each nonzero ideal of
D is S-w-principal. Recently, in [5, Definition 1], the authors generalized these
notions by using star-operations and introduced the concept of S-∗w-principal
ideal domains. They defined a nonzero ideal I of D to be S-∗w-principal if there
exist an element s ∈ S and a principal ideal (c) of D such that sI ⊆ (c) ⊆ I∗w ;
and the domain D to be an S-∗w-principal ideal domain (S-∗w-PID) if each
nonzero ideal of D is S-∗w-principal. If ∗ = d (resp., ∗ = v), then the notion of
S-∗w-PIDs is precisely the same as that of S-PIDs (resp., S-factorial domains).

The purpose of this article is to give the Cohen type theorem for S-∗w-
PIDs. As corollaries, we recover the characterizations of PIDs and UFDs. More
precisely, we show that D is an S-∗w-PID if and only if every nonzero prime
ideal of D (disjoint from S) is S-∗w-principal (Theorem 3). We also regain that
D is a PID if and only if every prime ideal of D is principal; and D is a UFD
if and only if for any nonzero prime ideal P of D, Pw is principal (Corollaries 6
and 7).

2. Main results

In this section, we give the Cohen type theorem for S-∗w-PIDs. To do this,
we need the following two lemmas.

Lemma 1. Let D be an integral domain and ∗ a star-operation on D.

(1) If I is a nonzero ideal of D and c is an element of D, then (I∗w : c) =
(I : c)∗w .

(2) If {Iα}α∈Λ is a chain of nonzero ideals of D, then
(⋃

α∈Λ Iα
)
∗w

=⋃
α∈Λ(Iα)∗w .

Proof. (1) Let a ∈ (I∗w : c). Then ac ∈ I∗w ; so there exists an element J1 ∈
GV∗(D) such that acJ1 ⊆ I. Hence aJ1 ⊆ (I : c), and thus a ∈ (I : c)∗w . For
the reverse containment, let b ∈ (I : c)∗w . Then we can find a ∗-GV-ideal J2 of
D such that bJ2 ⊆ (I : c); so bcJ2 ⊆ I. Hence bc ∈ I∗w , and thus b ∈ (I∗w : c).

(2) Let a ∈
(⋃

α∈Λ Iα
)
∗w

. Then there exists an element J ∈ GV∗(D)

such that Ja ⊆
⋃
α∈Λ Iα. Since J is finitely generated, Ja ⊆ Iβ for some

β ∈ Λ. Hence a ∈ (Iβ)∗w . Thus
(⋃

α∈Λ Iα
)
∗w
⊆
⋃
α∈Λ(Iα)∗w . For the
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reverse containment, note that (Iγ)∗w ⊆
(⋃

α∈Λ Iα
)
∗w

for all γ ∈ Λ. Thus⋃
α∈Λ(Iα)∗w ⊆

(⋃
α∈Λ Iα

)
∗w

. �

Lemma 2. Let D be an integral domain, ∗ a star-operation on D, and S a
multiplicative subset of D. Then an ideal of D maximal among non-S-∗w-
principal ideals is a prime ideal of D which is disjoint from S.

Proof. Let P be an ideal of D maximal among non-S-∗w-principal ideals of D,
and suppose to the contrary that P is not a prime ideal of D. Then we can
find a, b ∈ D \ P such that ab ∈ P . By the maximality of P , P + (a) is an
S-∗w-principal ideal of D; so we can choose an element s ∈ S and a principal
ideal (c) of D such that

s(P + (a)) ⊆ (c) ⊆ (P + (a))∗w .

Note that (P∗w : c) is an ideal of D containing P and b; so (P∗w : c) is an S-∗w-
principal ideal of D by the maximality of P . Therefore there exist an element
t ∈ S and a principal ideal (d) of D such that

t(P : c) ⊆ t(P∗w : c) ⊆ (d) ⊆ (P∗w : c)∗w = (P∗w : c),

where the equality follows from Lemma 1(1). Let x ∈ P . Then sx = cy for
some y ∈ (P : c); so sP ⊆ (P : c)c ⊆ P . Hence we obtain

stP ⊆ t(P : c)c ⊆ (cd) ⊆ (P∗w : c)c ⊆ P∗w ,

which shows that P is S-∗w-principal. However, this is a contradiction to the
fact that P is not S-∗w-principal. Thus P is a prime ideal of D.

If P intersects S, then we can find an element s ∈ P ∩S; so sP ⊆ (s) ⊆ P∗w .
Hence P is S-∗w-principal. This is absurd, because P is not S-∗w-principal.
Thus P ∩ S = ∅. �

We are now ready to prove the main result in this article.

Theorem 3. Let D be an integral domain, ∗ a star-operation on D, and S a
multiplicative subset of D. Then the following statements are equivalent.

(1) D is an S-∗w-PID.
(2) Every nonzero prime ideal of D (disjoint from S) is S-∗w-principal.

Proof. (1) ⇒ (2) This implication follows directly from the definition of S-∗w-
PIDs.

(2) ⇒ (1) Suppose that every nonzero prime ideal of D (disjoint from S)
is S-∗w-principal, and let A be the set of nonzero non-S-∗w-principal ideals
of D. If D is not an S-∗w-PID, then A is a nonempty set. Also, note that
A is partially ordered under inclusion. Let {Iα}α∈Λ be a chain in A, and set
I =

⋃
α∈Λ Iα. Then I is a nonzero ideal of D. If I is S-∗w-principal, then there

exist an element s ∈ S and a principal ideal (c) of D such that sI ⊆ (c) ⊆ I∗w ;
so by Lemma 1(2), (c) ⊆ (Iβ)∗w for some β ∈ Λ. Therefore sIβ ⊆ (c) ⊆ (Iβ)∗w .
However, this is impossible, because Iβ is not S-∗w-principal. Hence I is not
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S-∗w-principal. Note that I is an upper bound of the chain {Iα}α∈Λ; so Zorn’s
lemma guarantees the existence of a maximal element. Let P be a maximal
element in A. By Lemma 2, P is a (nonzero) prime ideal of D (disjoint from
S), which is absurd. Thus D is an S-∗w-PID. �

Corollary 4. ([1, Proposition 16]) Let D be an integral domain and S a multi-
plicative subset of D. Then D is an S-PID if and only if every (nonzero) prime
ideal of D is S-principal.

Proof. This equivalence is an immediate consequence of Theorem 3 by taking
∗ = d. �

Corollary 5. (cf. [4, Theorem 3.2]) Let D be an integral domain and S a
multiplicative subset of D. Then D is an S-factorial domain if and only if
every nonzero prime ideal of D is S-w-principal.

Proof. This equivalence follows directly from Theorem 3 by applying ∗ = v. �

Corollary 6. ([3, Section 1.1, Exercise 10]) Let D be an integral domain. Then
D is a PID if and only if every (nonzero) prime ideal of D is principal.

Proof. Let S be the set of units in D. By applying ∗ = d, the equivalence is an
immediate consequence of Theorem 3. �

Let D be an integral domain. It was shown that D is a UFD if and only if
every w-ideal of D is principal (cf. [2, pages 284-285]).

Corollary 7. Let D be an integral domain. Then D is a UFD if and only if
for any nonzero prime ideal P of D, Pw is principal.

Proof. Let S be the set of units in D. By applying ∗ = v to Theorem 3, we
obtain the desired equivalence. �

Let D be an integral domain. It is known that D is a PID if and only if
every countably generated ideal of D is principal. We end this article with the
following question.

Question 8. Let D be an integral domain, ∗ a star-operation on D, and S a
multiplicative subset of D. Is it true that D is an S-∗w-PID if and only if every
nonzero countably generated ideal of D is S-∗w-principal?
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