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EXISTENCE OF NONTRIVIAL SOLUTIONS OF A
NONLINEAR BIHARMONIC EQUATION

YINGHUA JIN*, Q-HEUNG CHOI AND XUECHUN WANG

ABSTRACT. We consider the existence of solutions of a nonlinear bi-
harmonic equation with Dirichlet boundary condition, A%u+ cAu =
f(z,u) in Q, where Q is a bounded open set in RY with smooth
boundary 092. We obtain two new results by linking theorem.

Let us consider the problem:
A?u+ cAu = f(z,u) in Q,

1
(0-1) u =0, Au=0 on 052,

where A? denote the biharmonic operator, A is the Laplacian on R,
ut = max{u,0}, @ C R is a smooth open bounded set. Here \; <
¢ < Ag, where {\;}x>1 denote the sequence of the eigenvalue of —A in
H} () and b is not eigenvalue of A% + cA,f is a differentiable function
such that f(0) = 0.

The existence of solutions of the biharmonic boundary value problem
have been extensively studied by many authors. Lazer and McKenna
in [5] point out that this kind of nonlinearity furnishes a good model to
study traveling waves in a suspension bridge. In [6] the authors Lazer and
McKenna proved the existence of 2k — 1 solutions of (0.1) when Q@ C R
is an interval and b > \g(A\x — ¢), for the assumption of f(x,u) = b(u +
1)* —1 by global bifurcation method, for the same f(z,u).Tarantello [10]
showed by degree theory that if b > A (A —c¢), then (0.1) has a solution u
such that u(z) < 0in Q, for f(z,u) = (u+1)"—1 when ¢ < A;. Choi and
Jung [2] showed that equation (0.1) has only the trivial solution when
Ak < ¢ < Akt1 and the nonlinear term is but (b < A1 (A; — ¢)). Micheletti
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and Pistoia [7] showed that equation (0.1) has at least two solutions when
¢ > A\; and the nonlinear term is b[(u + 1)* — 1](b < A1 (A1 — ¢)). Choi
and Jin [1] consider equation (0.1) that the nonlinear term has both bu™
and b[(u+ 1)" — 1]. In this paper we will study the problem (0.1), when
the nonlinearity is replaced by a more general function bu™ + g(x, u), by
using a ”variation of linking ” theorem.

1. Notations and preliminaries

We consider the problem of the existence of solutions of the bihar-
monic equation:

Au+ cAu = but + g(x,u) in Q,

1.1
(1.1) u=0, Au=0 on 0f),

where  is a smooth open boundary set in RV, g : Q x R — R is a
Caratheodory’s function and ¢, b € R.

In this section we introduce the Sobolev space spanned by the eigen-
functions of the operator A? + ¢A with Dirichlet boundary condition.
We define the associated functional I corresponding to (1.1) and show
that the functional I satisfies the (PS) condition.

Let Ax denote the eigenvalues and e, the corresponding eigenfunc-
tions, suitably normalized with respect to L?(§2) inner product, of the
eigenvalue problem Au + Au = 0 in 2, with Dirichlet boundary condi-
tion, where each eigenvalue )\, is repeated as often as its multiplicity.
We recall that 0 < A\j < Ay < A3 < ---,\; — +00 and that e; > 0 for
all z € Q.

The eigenvalue problem

A%y + cAu = \u in €,

1.2

(12) u =0, Au =10 on 02,

has infinitely many eigenvalues Ax(c) = A\e(Ar — ¢), kK = 1,2,--- and
corresponding eigenfunctions e;. Set Hy = span{e;,--- ,e.}, Hf =

{w € H|(w,v)g =0, Yv € Hy}.

Let H = H*(Q)N H(Q) be the Hilbert space equipped with the inner
product (u,v)y = [ AuAv+ [ VuVwv. The functional corresponding to
(1.1) given by I : H — R

(13)  I(u) = % (/ (Au)2—0/|Vu|2) - g/(u+)2+/g(x,u).
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Let C'(H, R) denote the set of all functionals which are Fréchet dif-
ferentiable and whose Fréchet derivatives are continuous on H. It is
easy to prove that I is a C! functional and its critical points are weak
solutions of problem (1.1).

We will use the following assumptions:

e (gl) 2G(x,u) — g(z,u)u < ap(x)s™ — ai(x) Vs € R where ag €
L>(Q ) o(z) >0 aein Q and a; € L'(Q);
o (g2) “‘) — 0 as |u| — oo uniformly for x € Q;
G(zu)
* (gg)nunwof fully, = U
o (g4) hH(l) 9e) o A,
e (g5) lim g(z“ < Ay

U—0o0

The following is the main result of this paper.

THEOREM 1.1. Assume that (gl),(g2),(g3). Let Ay < ¢ < Ay, b < Ay
then problem (1.1) has at least two solutions.

THEOREM 1.2. Assume that (gl),(g4),(g5). Let Ay < ¢ < A, b <
max{0, .22} then problem (1.1) has at least three solutions.

2. Proof of Theorem 1.1 and Theorem 1.2

DEFINITION 2.1. We say G satisfies the (PS) condition if any sequence
{ur} < H for which G(uy) is bounded and G'(u) — 0 as k — o0
possesses a convergent subsequence.

The (PS) condition is a convenient way to build some “compactness”
into the functional G. Indeed observe that (P.S) implies that K. = {u €
H | G(u) = ¢ and G'(u) = 0}, i.e. the set of critical points having
critical value ¢, is compact for any ¢ € R.

LEMMA 2.2. Assume b # A;;b # 0 and g satisfies the condition
(gl).Then For any ¢ € R the functional I satisfies the (PS) condition.
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Proof. We compute

I(u) = % (/ (Au)2—0/|Vu|2) —g/(m?— %/G(m,u)
:1</(Au)2+/|w?) - 1;_0/]Vu]2
__/ /Gm
= gl = [ (FEIval + 50+ 5 [ o).

We observe that

(2.1) VI(u) =u—i"[(1+c)Au+ but + g(z, u)].

Here i* : L?(Q2) — H is a compact operator. (i* is the adjoint of the
immersion i : H < L?*(2)). Suppose {uy}32, C H is the (PS) sequence,
i.e {I(u)}32, bounded and VI(ug) — 0 in H. It is enough to prove that
{up.}52, is bounded(because i* : L?(Q2) — H is a compact operator.). By
contradiction we suppose that lil£n||u1c||H = +o0. Up to a subsequence

we can assume that hm = u weakly in H, strongly in L*(Q) and

Hu H

pointwise in Q. By (2. 1) we deduce

(wr), ||uZT|H) P </ 2 e [ 19u)

B — g(x, ug ) ug
b/ el

urlla  Nlurlla

and, passing to the limit, we get

lim

/QG(:E, u) — gz, ug)ug =0

| url e

Moreover by (gl) we get

1 /2G(m’“k)_9(ﬂf>uk)uk§/ao ()" o

| url | url ||| 22
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and so passing to the limit , we get [ ag(ug)t > 0,since ag # 0. Hence
u>0ae in Qand u#0. From VI(ug) — 0 in H, we get

lim V() = klim { LN *[(1+c¢) B

Lyt

urller lurlla

=0

strongly in H. Here ¢* : L?*(Q)) — H is a compact operator. So the
bounded sequence lim Hulziﬁ}ke N converges strongly in H. Hence u —

i*[(1 + ¢)Au — bu] = 0. This implies that u > 0 is a nontrivial solution
of

(2.2) A%y + cAu = bu,

which contradicts to the equation (2.2) (b # A;(c),b # 0) that has only
the trivial solution. So we discovered that {uy}, is bounded in H,
hence there exists a subsequence {uy;}35_, and v € H with uy; — v in
H. [

To prove Theorem 1.1 we need the following two lemmas.
LEMMA 2.3. If g satisfies (g2), then we have lim,_, o, I(—re;) = —o0.

Proof. From definition of I and condition (g2), since A1(c) < 0 we get

](—relz—Al /el——/ rey) ——/G rey)
S0 = 9r* [ et - o

with » — 0o, which proves our claim. Il

Consider the values of I in the set I',(H), where

I',(H)= {uﬁ—uz € span{e, }OHi" | /u%%—/(AuQ)?—c/ |Vug|? < pz}.

The set I',(H) is homeomorphic to a ball in H, whose boundary is the
set

Yo(H) = {u1+uQ c span{e, }OH;" | /u%+/(Auz)z—c/ (V| = pQ}.
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LEMMA 2.4. Assume b < Ay(c) and (g3). Then there exists a small
p > 0 such that
inf I(u) > 0.
u€,(H)

Proof. For any u € H, we can write u as u = u; + us, where u; €
Hy,uy € Hi. By (g3), for sufficiently small p > 0, we get

I(u) > ; (/ (Auy)? /|Vu1|2) (/ (Auy)? /|Vu2|2)
__/ _—/u2

a §(|Iul||H +[luallf) - o(||ullar)

1 2
> S e) = b= v oflula) [ o

#50 = ollulla) ( [(dw2 e [ 190s) >0

for some positive constants c;, co. This proves the lemma. Il

Proof of Theorem 1.1
Since A} < ¢ < Ay, b < Ay(c) , by Lemma 2.4, there is a small p > 0
such that inf 7(u) > 0. From the definition of I, we have 1(0) = 0

UE'Y,O(H)
with 0 € I',(H). Set A = {—re;,0}, B = ~,(H). Then A links B. By
Lemma 2.3 there is sufficiently large » > 0 such that —re; ¢ I',(H)
and I(—re;) < 0. And thus supy I(u) < infg I(u). By the Mountain
Pass Theorem I possesses a critical value ¢; > infyey () I(u) > 0 and

0= I?i?H)[ (u). So I has two critical values. Hence the problem (1.1)
uecl,

has at least two solutions, one of which is nontrivial.

LEMMA 2.5. Suppose b > 0 and g satisfies (g4), then there exists a

small p > 0 such that  sup I(u) < 0.
lull=p,ucH:

Proof. From the condition of (g4) that there exist constant o > 0
such that £ (x W < o < Ai(c) for z € Q. Since g is subcritical growth,
we get G(z, u) < lau? —alul*, and a > 0, s € (2,2%). So for sufficiently
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small ||u|| we have,

I(w) < % (/(Au)2 _ C|Vu|2) _ g/u+2 _ %/auQ —I—a/ [uf?
: (/(M)? —C\Vu\2> - %/auz +/a!u\5
< %(Az(c)uz—a)/u2~l—a/fu|s

for some positive constant o > Ay(c). The norms || - ||z and || - || 2(q) in
H, are equivalent, since dim Hy = 2. Condition @ > As(c) implies that

As(e)u? — a < 0. So, for small p > 0 we have  sup I(u) < 0. O
llull=p,ueHs

IN

LEMMA 2.6. Let A\ < ¢ < Ay and

T—max{/<u+)2 | uer,/(Au)2—c|vu|2—1}.

Then we have T < ﬁ(c)

Proof. We know that [(Au)? — c|Vul*> > As(c) [u®* > As(c) [(u')?
for u € Hit. Hence T < L=. Suppose T = ; Then there ex-

Az(c) Az (e)”
ists a sequence {uk}keN in Hi* such that [(Au)? — ¢|Vu[?> = 1 and
lim [(u))* = 5 ( We have hmuk = win L*(Q) and [(u")? = A;(C).
Since 0 < [u? = f 24 f(u)r < AQ(C), we have u~ = 0. This is a
contradiction. O

From the condition of (gh) that there exist constant 5 > 0 such that
@ < B < Ay(c) for x € Q, and exist M > 0 and for |u] > M we have
G(z,u) < 1pu? — b, and b > 0.

LEMMA 2.7. Suppose g satisfies (gh) and b > 1%6 Then there exists
a large R > 0 such that

inf {I(u) | u=o0e+v,0>0,v€ Hy", /(Au)z—c/ [Vul* = R*} > 0.
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Proof. Under the assumptions of (g5) there exists 5 > 0 and b > 0
such that for ||ul| > R, we have

(v + oes) = % (/(A(v +oes))? — c/ V(o + 062)|2>

b b
—5/(U+U€2)+2+§/G<U+0’€2)

>3 (fawr e [roup) - § [y
2 2
- [ 5002 = blul?
2
1
> 5(1 — T — () (/(Au)2 - c/ |Vu\2) + b]€.
Since b > 1%6, the argument holds for large R > 0. Il

Proof of Theorem 1.2
Since b = maxz{0, %} and ¢ satisfies (g4),(gh) by Lemma 2.5 and
2.6 there exist R > p > 0 such that

sup I(u) <0< inf  I(v),
lull=p,u€ Ha vEXR(e2,Ha ™)

where Y g (e, HQL) is the boundary of the set
{](u)\u =ocey+v|o>0,ve€ HQ,/(AU)2 — c/ Vul? < RZ}.
By the Variational Linking Theorem I(u) has at least two nonzero

critical values ¢, ¢y such as

g < sup I(u) <0< inf  I(v) <.
ull=p,ucHa vEXR(e2,Ha ™)

Therefore, (1.1) has at least two nontrivial solutions. This implies that
(1.1) has at least three solutions.
3. Variational setting

To introduce a Variational Linking Theorem, we define the following
sets.
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DEFINITION 3.1. Let X be a Hilbert space, Y C X, p > 0, and
ee X\Y,e#0. Set

o B)(Y)={zeY||lz|x <p},

o 5,(Y) ={x Y [|lz]x = p},

o Ay(e,Y)={oe+v]|o>0,veY,loe+v|x <p},

oY, (e,Y) ={oe+v]|o>0veY|oet+v||x =ptU{v]|ve
Y [Jvllx < p}-

We recall a theorem of existence of two critical levels for a functional
which is a variation of linking theorem.

THEOREM 3.2. (A variation of Linking.) Let X be a Hilbert space
which is topological direct sum of the subspaces Xy, Xs. Let f €
CY(X, R). Moreover assume

(a) dimX; < o0,

(b) there exist p > 0, R > 0 and e € X1, e # 0 such that p < R and
SUpPg,(x;) S < infspexs) [,

(c)—00 < a=1infag(e,x,) f

(d) (PS). condition holds for any ¢ € |a,b] where b = SUpp,(x,) f-
Then there exist at least two critical levels ¢; and ¢y for the functional
f such that

inf f<e < sup f< inf f<e< sup f
AR(e,X2) S,(X1) Er(e,X2) B,(X1)
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