EXISTENCE OF NONTRIVIAL SOLUTIONS OF A NONLINEAR BIHARMONIC EQUATION

Yinghua Jin*, Q-Heung Choi and Xuechun Wang

ABSTRACT. We consider the existence of solutions of a nonlinear biharmonic equation with Dirichlet boundary condition, $\Delta^2 u + c\Delta u = f(x, u)$ in Ω , where Ω is a bounded open set in R^N with smooth boundary $\partial\Omega$. We obtain two new results by linking theorem.

Let us consider the problem:

(0.1)
$$\Delta^2 u + c\Delta u = f(x, u) \quad \text{in } \Omega,$$
$$u = 0, \quad \Delta u = 0 \quad \text{on } \partial\Omega,$$

where Δ^2 denote the biharmonic operator, Δ is the Laplacian on R^N , $u^+ = \max\{u, 0\}$, $\Omega \subset R^N$ is a smooth open bounded set. Here $\lambda_1 < c < \lambda_2$, where $\{\lambda_k\}_{k \geq 1}$ denote the sequence of the eigenvalue of $-\Delta$ in $H_0^1(\Omega)$ and b is not eigenvalue of $\Delta^2 + c\Delta, f$ is a differentiable function such that f(0) = 0.

The existence of solutions of the biharmonic boundary value problem have been extensively studied by many authors. Lazer and McKenna in [5] point out that this kind of nonlinearity furnishes a good model to study traveling waves in a suspension bridge. In [6] the authors Lazer and McKenna proved the existence of 2k-1 solutions of (0.1) when $\Omega \subset R$ is an interval and $b > \lambda_k(\lambda_k - c)$, for the assumption of $f(x, u) = b(u + 1)^+ - 1$ by global bifurcation method, for the same f(x, u). Tarantello [10] showed by degree theory that if $b \geq \lambda_1(\lambda_1 - c)$, then (0.1) has a solution u such that u(x) < 0 in Ω , for $f(x, u) = (u+1)^+ - 1$ when $c < \lambda_1$. Choi and Jung [2] showed that equation (0.1) has only the trivial solution when $\lambda_k < c < \lambda_{k+1}$ and the nonlinear term is $bu^+(b < \lambda_1(\lambda_1 - c))$. Micheletti

Received October 11, 2009. Revised November 20, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 35J35.

Key words and phrases: Dirichlet boundary condition, linking theorem, eigenvalue.

This work was Supported by PIRT of Jiangnan University.

^{*}Corresponding author.

and Pistoia [7] showed that equation (0.1) has at least two solutions when $c > \lambda_1$ and the nonlinear term is $b[(u+1)^+ - 1](b < \lambda_1(\lambda_1 - c))$. Choi and Jin [1] consider equation (0.1) that the nonlinear term has both bu^+ and $b[(u+1)^+ - 1]$. In this paper we will study the problem (0.1), when the nonlinearity is replaced by a more general function $bu^+ + g(x, u)$, by using a "variation of linking" theorem.

1. Notations and preliminaries

We consider the problem of the existence of solutions of the biharmonic equation:

(1.1)
$$\Delta^2 u + c\Delta u = bu^+ + g(x, u) \quad \text{in } \Omega,$$
$$u = 0, \quad \Delta u = 0 \quad \text{on } \partial\Omega,$$

where Ω is a smooth open boundary set in \mathbb{R}^N , $g: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Caratheodory's function and $c, b \in \mathbb{R}$.

In this section we introduce the Sobolev space spanned by the eigenfunctions of the operator $\Delta^2 + c\Delta$ with Dirichlet boundary condition. We define the associated functional I corresponding to (1.1) and show that the functional I satisfies the (PS) condition.

Let λ_k denote the eigenvalues and e_k the corresponding eigenfunctions, suitably normalized with respect to $L^2(\Omega)$ inner product, of the eigenvalue problem $\Delta u + \lambda u = 0$ in Ω , with Dirichlet boundary condition, where each eigenvalue λ_k is repeated as often as its multiplicity. We recall that $0 < \lambda_1 < \lambda_2 \le \lambda_3 \le \cdots, \lambda_i \to +\infty$ and that $e_1 > 0$ for all $x \in \Omega$.

The eigenvalue problem

(1.2)
$$\Delta^2 u + c\Delta u = \lambda u \quad \text{in } \Omega, \\ u = 0, \quad \Delta u = 0 \quad \text{on } \partial\Omega.$$

has infinitely many eigenvalues $\Lambda_k(c) = \lambda_k(\lambda_k - c)$, $k = 1, 2, \cdots$ and corresponding eigenfunctions e_k . Set $H_k = span\{e_1, \cdots, e_k\}$, $H_k^{\perp} = \{w \in H | (w, v)_H = 0, \forall v \in H_k\}$.

Let $H = H^2(\Omega) \cap H_0^1(\Omega)$ be the Hilbert space equipped with the inner product $(u, v)_H = \int \Delta u \Delta v + \int \nabla u \nabla v$. The functional corresponding to (1.1) given by $I: H \to R$

(1.3)
$$I(u) := \frac{1}{2} \left(\int (\Delta u)^2 - c \int |\nabla u|^2 \right) - \frac{b}{2} \int (u^+)^2 + \int g(x, u).$$

Let $C^1(H,R)$ denote the set of all functionals which are Fréchet differentiable and whose Fréchet derivatives are continuous on H. It is easy to prove that I is a C^1 functional and its critical points are weak solutions of problem (1.1).

We will use the following assumptions:

- (g1) $2G(x,u) g(x,u)u \le a_0(x)s^+ a_1(x) \quad \forall s \in R \text{ where } a_0 \in L^{\infty}(\Omega), a_0(x) > 0 \text{ a.e in } \Omega \text{ and } a_1 \in L^1(\Omega);$
- (g2) $\frac{G(x,u)}{u^2} \to 0$ as $|u| \to \infty$ uniformly for $x \in \Omega$;
- $(g3) \lim_{\|u\|_{H} \to 0} \int \frac{G(x,u)}{\|u\|_{H}^{2}} = 0;$
- (g4) $\lim_{u \to 0} \frac{g(x,u)}{u} > \Lambda_2;$
- (g5) $\lim_{u \to \infty} \frac{g(x,u)}{u} < \Lambda_2$:

The following is the main result of this paper.

THEOREM 1.1. Assume that (g1),(g2),(g3). Let $\lambda_1 < c < \lambda_2$, $b < \Lambda_1$ then problem (1.1) has at least two solutions.

THEOREM 1.2. Assume that (g1),(g4),(g5). Let $\lambda_1 < c < \lambda_2$, $b < \max\{0, \frac{1-\beta}{T}\}$ then problem (1.1) has at least three solutions.

2. Proof of Theorem 1.1 and Theorem 1.2

DEFINITION 2.1. We say G satisfies the (PS) condition if any sequence $\{u_k\} \subset H$ for which $G(u_k)$ is bounded and $G'(u_k) \to 0$ as $k \to \infty$ possesses a convergent subsequence.

The (PS) condition is a convenient way to build some "compactness" into the functional G. Indeed observe that (PS) implies that $K_c \equiv \{u \in H \mid G(u) = c \text{ and } G'(u) = 0\}$, i.e. the set of critical points having critical value c, is compact for any $c \in R$.

LEMMA 2.2. Assume $b \neq \Lambda_i, b \neq 0$ and g satisfies the condition (g1). Then For any $c \in R$ the functional I satisfies the (PS) condition.

Proof. We compute

$$I(u) = \frac{1}{2} \left(\int (\Delta u)^2 - c \int |\nabla u|^2 \right) - \frac{b}{2} \int (u^+)^2 - \frac{1}{2} \int G(x, u)$$

$$= \frac{1}{2} \left(\int (\Delta u)^2 + \int |\nabla u|^2 \right) - \frac{1+c}{2} \int |\nabla u|^2$$

$$- \frac{b}{2} \int (u^+)^2 - \frac{1}{2} \int G(x, u)$$

$$= \frac{1}{2} ||u||_H^2 - \int \left(\frac{1+c}{2} |\nabla u|^2 + \frac{b}{2} (u^+)^2 + \frac{1}{2} \int G(x, u) \right).$$

We observe that

(2.1)
$$\nabla I(u) = u - i^*[(1+c)\Delta u + bu^+ + g(x,u)].$$

Here $i^*: L^2(\Omega) \to H$ is a compact operator. (i^* is the adjoint of the immersion $i: H \hookrightarrow L^2(\Omega)$). Suppose $\{u_k\}_{k=1}^{\infty} \subset H$ is the (PS) sequence, i.e $\{I(u_k)\}_{k=1}^{\infty}$ bounded and $\nabla I(u_k) \to 0$ in H. It is enough to prove that $\{u_k\}_{k=1}^{\infty}$ is bounded(because $i^*: L^2(\Omega) \to H$ is a compact operator.). By contradiction we suppose that $\lim_k ||u_k||_H = +\infty$. Up to a subsequence we can assume that $\lim_k \frac{u_k}{||u_k||_H} = u$ weakly in H, strongly in $L^2(\Omega)$ and pointwise in Ω . By (2.1) we deduce

$$\begin{split} \left(\nabla I(u_k), \frac{u_k}{\|u_k\|_H}\right)_H &= \frac{1}{\|u_k\|_H} \left(\int |\Delta u_k|^2 - c \int |\nabla u_k|^2\right) \\ &- b \int \frac{u^{+\frac{2}{k}} - g(x, u_k)u_k}{\|u_k\|_H} \\ &= \frac{2I(u_k)}{\|u_k\|_H} + \frac{1}{\|u_k\|_H} \int 2G(x, u_k) - g(x, u_k)u_k \end{split}$$

and, passing to the limit, we get

$$\lim \frac{1}{\|u_k\|_H} \int 2G(x, u_k) - g(x, u_k)u_k = 0$$

Moreover by (g1) we get

$$\frac{1}{\|u_k\|_H} \int 2G(x, u_k) - g(x, u_k)u_k \le \int a_0 \frac{(u_k)^+}{\|u_k\|_H} - \int \frac{a_1}{\|u_k\|_H}$$

and so passing to the limit, we get $\int a_0(u_k)^+ \ge 0$, since $a_0 \ne 0$. Hence $u \ge 0$ a.e. in Ω and $u \ne 0$. From $\nabla I(u_k) \to 0$ in H, we get

$$\lim_{k \to \infty} \frac{\nabla I(u_k)}{\|u_k\|_H} = \lim_{k \to \infty} \left\{ \frac{u_k}{\|u_k\|_H} - i^* [(1+c) \frac{\Delta u_k}{\|u_k\|_H} - b \frac{u_k}{\|u_k\|_H} - \frac{g(x, u_k)}{\|u_k\|_H} \right\}$$

$$= 0$$

strongly in H. Here $i^*: L^2(\Omega) \to H$ is a compact operator. So the bounded sequence $\lim \frac{u_k}{\|u_k\|_H} \}_{k \in \mathbb{N}}$ converges strongly in H. Hence $u - i^*[(1+c)\Delta u - bu] = 0$. This implies that $u \geq 0$ is a nontrivial solution of

$$(2.2) \Delta^2 u + c\Delta u = bu,$$

which contradicts to the equation (2.2) $(b \neq \Lambda_i(c), b \neq 0)$ that has only the trivial solution. So we discovered that $\{u_k\}_{k=1}^{\infty}$ is bounded in H, hence there exists a subsequence $\{u_{kj}\}_{kj=1}^{\infty}$ and $u \in H$ with $u_{kj} \to u$ in H

To prove Theorem 1.1 we need the following two lemmas.

LEMMA 2.3. If g satisfies (g2), then we have $\lim_{r\to+\infty} I(-re_1) = -\infty$.

Proof. From definition of I and condition (g2), since $\Lambda_1(c) < 0$ we get

$$I(-re_1) = \frac{1}{2}\Lambda_1(c)r^2 \int e_1^2 - \frac{b}{2} \int [(-re_1)^2 - \frac{1}{2} \int G(-re_1)]$$

$$\leq \frac{1}{2}(\Lambda_1(c) - \epsilon)r^2 \int e_1^2 \to -\infty$$

with $r \to \infty$, which proves our claim.

Consider the values of I in the set $\Gamma_{\rho}(H)$, where

$$\Gamma_{\rho}(H) = \left\{ u_1 + u_2 \in span\{e_1\} \oplus H_1^{\perp} \mid \int u_1^2 + \int (\Delta u_2)^2 - c \int |\nabla u_2|^2 \le \rho^2 \right\}.$$

The set $\Gamma_{\rho}(H)$ is homeomorphic to a ball in H, whose boundary is the set

$$\gamma_{\rho}(H) = \left\{ u_1 + u_2 \in span\{e_1\} \oplus H_1^{\perp} \mid \int u_1^2 + \int (\Delta u_2)^2 - c \int |\nabla u_2|^2 = \rho^2 \right\}.$$

LEMMA 2.4. Assume $b < \Lambda_1(c)$ and (g3). Then there exists a small $\rho > 0$ such that

$$\inf_{u \in \gamma_o(H)} I(u) > 0.$$

Proof. For any $u \in H$, we can write u as $u = u_1 + u_2$, where $u_1 \in H_1, u_2 \in H_1^{\perp}$. By (g3), for sufficiently small $\rho > 0$, we get

$$I(u) \ge \frac{1}{2} \left(\int (\Delta u_1)^2 - c \int |\nabla u_1|^2 \right) + \frac{1}{2} \left(\int (\Delta u_2)^2 - c \int |\nabla u_2|^2 \right)$$

$$- \frac{b}{2} \int u_1^2 - \frac{b}{2} \int u_2^2$$

$$- \frac{1}{2} (\|u_1\|_H^2 + \|u_2\|_H^2) \cdot o(\|u\|_H)$$

$$\ge \frac{1}{2} (\Lambda_1(c) - b - c_1 \cdot o(\|u\|_H)) \int u_1^2$$

$$+ \frac{1}{2} (1 - c_2 \cdot o(\|u\|_H)) \left(\int (\Delta u_2)^2 - c \int |\nabla u_2|^2 \right) > 0$$

for some positive constants c_1, c_2 . This proves the lemma.

Proof of Theorem 1.1

Since $\lambda_1 < c < \lambda_2$, $b < \Lambda_1(c)$, by Lemma 2.4, there is a small $\rho > 0$ such that $\inf_{u \in \gamma_\rho(H)} I(u) > 0$. From the definition of I, we have I(0) = 0 with $0 \in \Gamma_\rho(H)$. Set $A = \{-re_1, 0\}, B = \gamma_\rho(H)$. Then A links B. By Lemma 2.3 there is sufficiently large r > 0 such that $-re_1 \notin \Gamma_\rho(H)$ and $I(-re_1) < 0$. And thus $\sup_A I(u) < \inf_B I(u)$. By the Mountain Pass Theorem I possesses a critical value $c_1 \ge \inf_{u \in \gamma_\rho(H)} I(u) > 0$ and $0 = \min_{u \in \Gamma_\rho(H)} I(u)$. So I has two critical values. Hence the problem (1.1) has at least two solutions, one of which is nontrivial.

LEMMA 2.5. Suppose b > 0 and g satisfies (g4), then there exists a small $\rho > 0$ such that $\sup_{\|u\| = \rho, u \in H_2} I(u) < 0$.

Proof. From the condition of (g4) that there exist constant $\alpha > 0$ such that $\frac{g(x,u)}{u} \leq \alpha < \Lambda_1(c)$ for $x \in \Omega$. Since g is subcritical growth, we get $G(x,u) \leq \frac{1}{2}\alpha u^2 - a|u|^s$, and a > 0, $s \in (2,2^*)$. So for sufficiently

small ||u|| we have,

$$I(u) \le \frac{1}{2} \left(\int (\Delta u)^2 - c |\nabla u|^2 \right) - \frac{b}{2} \int u^{+2} - \frac{1}{2} \int \alpha u^2 + a \int |u|^s$$

$$\le \frac{1}{2} \left(\int (\Delta u)^2 - c |\nabla u|^2 \right) - \frac{1}{2} \int \alpha u^2 + \int a|u|^s$$

$$\le \frac{1}{2} (\Lambda_2(c)u^2 - \alpha) \int u^2 + a \int |u|^s$$

for some positive constant $\alpha > \Lambda_2(c)$. The norms $\|\cdot\|_H$ and $\|\cdot\|_{L^2(\Omega)}$ in H_2 are equivalent, since dim $H_2 = 2$. Condition $\alpha > \Lambda_2(c)$ implies that $\Lambda_2(c)u^2 - \alpha < 0$. So, for small $\rho > 0$ we have $\sup_{\|u\| = \rho, u \in H_2} I(u) < 0$. \square

LEMMA 2.6. Let $\lambda_1 < c < \lambda_2$ and

$$T = \max \left\{ \int (u^+)^2 \mid u \in H_1^{\perp}, \int (\Delta u)^2 - c |\nabla u|^2 = 1 \right\}.$$

Then we have $T < \frac{1}{\Lambda_2(c)}$.

Proof. We know that $\int (\Delta u)^2 - c |\nabla u|^2 \ge \Lambda_2(c) \int u^2 \ge \Lambda_2(c) \int (u^+)^2$ for $u \in H_1^{\perp}$. Hence $T \le \frac{1}{\Lambda_2(c)}$. Suppose $T = \frac{1}{\Lambda_2(c)}$. Then there exists a sequence $\{u_k\}_{k \in N}$ in H_1^{\perp} such that $\int (\Delta u)^2 - c |\nabla u|^2 = 1$ and $\lim \int (u_k^+)^2 = \frac{1}{\Lambda_2(c)}$. We have $\lim u_k = u$ in $L^2(\Omega)$ and $\int (u^+)^2 = \frac{1}{\Lambda_2(c)}$. Since $0 \le \int u^2 = \int (u^+)^2 + \int (u^-)^2 \le \frac{1}{\Lambda_2(c)}$, we have $u^- = 0$. This is a contradiction.

From the condition of (g5) that there exist constant $\beta > 0$ such that $\frac{g(x,u)}{u} \leq \beta < \Lambda_2(c)$ for $x \in \Omega$, and exist M > 0 and for $|u| \geq M$ we have $G(x,u) \leq \frac{1}{2}\beta u^2 - b$, and b > 0.

Lemma 2.7. Suppose g satisfies (g5) and $b > \frac{1-\beta}{T}$. Then there exists a large R > 0 such that

$$\inf \left\{ I(u) \mid u = \sigma e_2 + v, \sigma \ge 0, v \in H_2^{\perp}, \int (\Delta u)^2 - c \int |\nabla u|^2 = R^2 \right\} > 0.$$

Proof. Under the assumptions of (g5) there exists $\beta > 0$ and b > 0 such that for $||u|| \ge R$, we have

$$I(v + \sigma e_2) = \frac{1}{2} \left(\int (\Delta(v + \sigma e_2))^2 - c \int |\nabla(v + \sigma e_2)|^2 \right)$$

$$- \frac{b}{2} \int (v + \sigma e_2)^{+2} + \frac{b}{2} \int G(v + \sigma e_2)$$

$$\geq \frac{1}{2} \left(\int (\Delta u)^2 - c \int |\nabla u|^2 \right) - \frac{b}{2} \int (u^+)^2$$

$$- \int \frac{1}{2} (\beta u^2 - b|u|^s)$$

$$\geq \frac{1}{2} (1 - bT - \beta) \left(\int (\Delta u)^2 - c \int |\nabla u|^2 \right) + b|\Omega|.$$

Since $b > \frac{1-\beta}{T}$, the argument holds for large R > 0.

Proof of Theorem 1.2

Since $b=max\{0,\frac{1-\beta}{T}\}$ and g satisfies (g4),(g5) by Lemma 2.5 and 2.6 there exist $R>\rho>0$ such that

$$\sup_{\|u\|=\rho, u \in H_2} I(u) < 0 < \inf_{v \in \Sigma_R(e_2, H_2^{\perp})} I(v),$$

where $\Sigma_R(e_2, H_2^{\perp})$ is the boundary of the set

$$\left\{ I(u)|u = \sigma e_2 + v \mid \sigma \ge 0, v \in H_2, \int (\Delta u)^2 - c \int |\nabla u|^2 \le R^2 \right\}.$$

By the Variational Linking Theorem I(u) has at least two nonzero critical values c_1 , c_2 such as

$$c_1 \le \sup_{\|u\|=\rho, u \in H_2} I(u) < 0 < \inf_{v \in \Sigma_R(e_2, H_2^{\perp})} I(v) \le c_2.$$

Therefore, (1.1) has at least two nontrivial solutions. This implies that (1.1) has at least three solutions.

3. Variational setting

To introduce a Variational Linking Theorem, we define the following sets.

DEFINITION 3.1. Let X be a Hilbert space, $Y \subset X$, $\rho > 0$, and $e \in X \setminus Y, e \neq 0$. Set

- $B_{\rho}(Y) = \{x \in Y \mid ||x||_{X} \leq \rho\},$ $S_{\rho}(Y) = \{x \in Y \mid ||x||_{X} = \rho\},$ $\Delta_{\rho}(e, Y) = \{\sigma e + v \mid \sigma \geq 0, v \in Y, ||\sigma e + v||_{X} \leq \rho\},$ $\Sigma_{\rho}(e, Y) = \{\sigma e + v \mid \sigma \geq 0, v \in Y, ||\sigma e + v||_{X} = \rho\} \cup \{v \mid v \in Y,$

We recall a theorem of existence of two critical levels for a functional which is a variation of linking theorem.

Theorem 3.2. (A variation of Linking.) Let X be a Hilbert space which is topological direct sum of the subspaces X_1, X_2 . Let $f \in$ $C^1(X,R)$. Moreover assume

- (a) $\dim X_1 < +\infty$,
- (b) there exist $\rho > 0$, R > 0 and $e \in X_1$, $e \neq 0$ such that $\rho < R$ and $\sup_{S_o(X_1)} f < \inf_{\Sigma_R(e, X_2)} f,$
- $(c)-\infty < a = \inf_{\Delta_R(e,X_2)} f,$ $(d) (PS)_c \text{ condition holds for any } c \in [a,b] \text{ where } b = \sup_{B_{\rho}(X_1)} f.$ Then there exist at least two critical levels c_1 and c_2 for the functional f such that

$$\inf_{\Delta_R(e, X_2)} f \le c_1 \le \sup_{S_{\rho}(X_1)} f < \inf_{\Sigma_R(e, X_2)} f \le c_2 \le \sup_{B_{\rho}(X_1)} f.$$

References

- [1] Q. H. Choi and Yinghua Jin, Nonlinearity and nontrivial solutions of fourth order semilinear elliptic equations. Journ. Math. Anal. Appl. 29 (2004),224–234.
- [2] Q. H. Choi, T. Jung and P. J. McKenna, The study of a nonlinear suspension bridge equation by a variational reduction method. Appl. Anal. 50 (1993),71–90.
- [3] H. Hofer, On strongly indefinite functionals with applications. Trans. Amer. Math. Soc. **275** (1983), 185–214.
- [4] L. Humphreys, Numerical and theoretical results on large amplitude periodic solutions of a suspension bridge equation. ph. D. thesis, University of Connecticut
- [5] P. J. McKenna and W. Walter, Nonlinear Oscillations in a Suspension Bridge. Arch. Rational Mech. Anal. 98 (1987), 167–177.
- [6] P. J. McKenna and W. Walter, Global bifurcation and a Theorem of Tarantello. Journ. Math. Anal. Appl. 181 (1994), 648-655.
- [7] A. M. Micheletti and C. Saccon, Multiple nontrivial solutions for a floating beam via critical point theory. J. Differential Equations, 170 (2001), 157–179.

- [8] S. Li and A. Squlkin, *Periodic solutions of an asymptotically linear wave equation*. Nonlinear Analysis, 1 (1993), 211–230.
- [9] J. Q. Liu, Free vibrations for an asymmetric beam equation. Nonlinear Analysis, 51 (2002), 487–497.
- [10] Tarantello G, A note on a semilinear elliptic problem. Differential and Integral Equations. 5 (1992), 561-566.

School of Sciences
Jiangnan University
1800 Lihu Road Wuxi Jiangsu Province
China 214122
E-mail: yinghuaj@empal.com

Department of Mathematics Inha University Incheon 402-751, Korea *E-mail*: qheung@inha.ac.kr

School of Sciences Jiangnan University 1800 Lihu Road Wuxi Jiangsu Province China 214122