EXISTENCE OF NONTRIVIAL SOLUTIONS OF A NONLINEAR BIHARMONIC EQUATION

Yinghua Jin*, Q-Heung Choi and Xuechun Wang

Abstract. We consider the existence of solutions of a nonlinear biharmonic equation with Dirichlet boundary condition, $\Delta^{2} u+c \Delta u=$ $f(x, u)$ in Ω, where Ω is a bounded open set in R^{N} with smooth boundary $\partial \Omega$. We obtain two new results by linking theorem.
Let us consider the problem:

$$
\begin{array}{lr}
\Delta^{2} u+c \Delta u=f(x, u) & \text { in } \Omega, \\
u=0, & \Delta u=0 \tag{0.1}
\end{array}
$$

where Δ^{2} denote the biharmonic operator, Δ is the Laplacian on R^{N}, $u^{+}=\max \{u, 0\}, \Omega \subset R^{N}$ is a smooth open bounded set. Here $\lambda_{1}<$ $c<\lambda_{2}$, where $\left\{\lambda_{k}\right\}_{k \geq 1}$ denote the sequence of the eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega)$ and b is not eigenvalue of $\Delta^{2}+c \Delta, f$ is a differentiable function such that $f(0)=0$.

The existence of solutions of the biharmonic boundary value problem have been extensively studied by many authors. Lazer and McKenna in [5] point out that this kind of nonlinearity furnishes a good model to study traveling waves in a suspension bridge. In [6] the authors Lazer and McKenna proved the existence of $2 k-1$ solutions of (0.1) when $\Omega \subset R$ is an interval and $b>\lambda_{k}\left(\lambda_{k}-c\right)$, for the assumption of $f(x, u)=b(u+$ $1)^{+}-1$ by global bifurcation method, for the same $f(x, u)$.Tarantello [10] showed by degree theory that if $b \geq \lambda_{1}\left(\lambda_{1}-c\right)$, then (0.1) has a solution u such that $u(x)<0$ in Ω, for $f(x, u)=(u+1)^{+}-1$ when $c<\lambda_{1}$. Choi and Jung [2] showed that equation (0.1) has only the trivial solution when $\lambda_{k}<c<\lambda_{k+1}$ and the nonlinear term is $b u^{+}\left(b<\lambda_{1}\left(\lambda_{1}-c\right)\right)$. Micheletti

[^0]and Pistoia [7] showed that equation (0.1) has at least two solutions when $c>\lambda_{1}$ and the nonlinear term is $b\left[(u+1)^{+}-1\right]\left(b<\lambda_{1}\left(\lambda_{1}-c\right)\right)$. Choi and Jin [1] consider equation (0.1) that the nonlinear term has both $b u^{+}$ and $b\left[(u+1)^{+}-1\right]$. In this paper we will study the problem (0.1), when the nonlinearity is replaced by a more general function $b u^{+}+g(x, u)$, by using a "variation of linking " theorem.

1. Notations and preliminaries

We consider the problem of the existence of solutions of the biharmonic equation:

$$
\begin{array}{ll}
\Delta^{2} u+c \Delta u=b u^{+}+g(x, u) & \text { in } \Omega, \\
u=0, \quad \Delta u=0 & \text { on } \partial \Omega, \tag{1.1}
\end{array}
$$

where Ω is a smooth open boundary set in $R^{N}, g: \Omega \times R \rightarrow R$ is a Caratheodory's function and $c, b \in R$.

In this section we introduce the Sobolev space spanned by the eigenfunctions of the operator $\Delta^{2}+c \Delta$ with Dirichlet boundary condition. We define the associated functional I corresponding to (1.1) and show that the functional I satisfies the (PS) condition.

Let λ_{k} denote the eigenvalues and e_{k} the corresponding eigenfunctions, suitably normalized with respect to $L^{2}(\Omega)$ inner product, of the eigenvalue problem $\Delta u+\lambda u=0$ in Ω, with Dirichlet boundary condition, where each eigenvalue λ_{k} is repeated as often as its multiplicity. We recall that $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots, \lambda_{i} \rightarrow+\infty$ and that $e_{1}>0$ for all $x \in \Omega$.

The eigenvalue problem

$$
\begin{align*}
& \Delta^{2} u+c \Delta u=\lambda u \quad \text { in } \Omega, \\
& u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega, \tag{1.2}
\end{align*}
$$

has infinitely many eigenvalues $\Lambda_{k}(c)=\lambda_{k}\left(\lambda_{k}-c\right), k=1,2, \cdots$ and corresponding eigenfunctions e_{k}. Set $H_{k}=\operatorname{span}\left\{e_{1}, \cdots, e_{k}\right\}, H_{k}^{\perp}=$ $\left\{w \in H \mid(w, v)_{H}=0, \quad \forall v \in H_{k}\right\}$.

Let $H=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ be the Hilbert space equipped with the inner product $(u, v)_{H}=\int \Delta u \Delta v+\int \nabla u \nabla v$. The functional corresponding to (1.1) given by $I: H \rightarrow R$

$$
\begin{equation*}
I(u):=\frac{1}{2}\left(\int(\Delta u)^{2}-c \int|\nabla u|^{2}\right)-\frac{b}{2} \int\left(u^{+}\right)^{2}+\int g(x, u) . \tag{1.3}
\end{equation*}
$$

Let $C^{1}(H, R)$ denote the set of all functionals which are Fréchet differentiable and whose Fréchet derivatives are continuous on H. It is easy to prove that I is a C^{1} functional and its critical points are weak solutions of problem (1.1).

We will use the following assumptions:

- (g1) $2 G(x, u)-g(x, u) u \leq a_{0}(x) s^{+}-a_{1}(x) \quad \forall s \in R$ where $a_{0} \in$ $L^{\infty}(\Omega), a_{0}(x)>0$ a.e in Ω and $a_{1} \in L^{1}(\Omega)$;
- (g2) $\frac{G(x, u)}{u^{2}} \rightarrow 0$ as $|u| \rightarrow \infty$ uniformly for $x \in \Omega$;
- (g3) $\lim _{\|u\|_{H} \rightarrow 0} \int \frac{G(x, u)}{\|u\|_{H}^{2}}=0$;
- (g4) $\lim _{u \rightarrow 0} \frac{g(x, u)}{u}>\Lambda_{2}$;
- (g5) $\lim _{u \rightarrow \infty} \frac{g(x, u)}{u}<\Lambda_{2}$:

The following is the main result of this paper.
Theorem 1.1. Assume that (g1),(g2),(g3). Let $\lambda_{1}<c<\lambda_{2}, b<\Lambda_{1}$ then problem (1.1) has at least two solutions.

Theorem 1.2. Assume that (g1),(g4),(g5). Let $\lambda_{1}<c<\lambda_{2}, b<$ $\max \left\{0, \frac{1-\beta}{T}\right\}$ then problem (1.1) has at least three solutions.

2. Proof of Theorem 1.1 and Theorem 1.2

Definition 2.1. We say G satisfies the (PS) condition if any sequence $\left\{u_{k}\right\} \subset H$ for which $G\left(u_{k}\right)$ is bounded and $G^{\prime}\left(u_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$ possesses a convergent subsequence.

The $(P S)$ condition is a convenient way to build some "compactness" into the functional G. Indeed observe that $(P S)$ implies that $K_{c} \equiv\{u \in$ $H \mid G(u)=c$ and $\left.G^{\prime}(u)=0\right\}$, i.e. the set of critical points having critical value c, is compact for any $c \in R$.

Lemma 2.2. Assume $b \neq \Lambda_{i}, b \neq 0$ and g satisfies the condition (g1).Then For any $c \in R$ the functional I satisfies the ($P S$) condition.

Proof. We compute

$$
\begin{aligned}
I(u)= & \frac{1}{2}\left(\int(\Delta u)^{2}-c \int|\nabla u|^{2}\right)-\frac{b}{2} \int\left(u^{+}\right)^{2}-\frac{1}{2} \int G(x, u) \\
= & \frac{1}{2}\left(\int(\Delta u)^{2}+\int|\nabla u|^{2}\right)-\frac{1+c}{2} \int|\nabla u|^{2} \\
& -\frac{b}{2} \int\left(u^{+}\right)^{2}-\frac{1}{2} \int G(x, u) \\
= & \frac{1}{2}\|u\|_{H}^{2}-\int\left(\frac{1+c}{2}|\nabla u|^{2}+\frac{b}{2}\left(u^{+}\right)^{2}+\frac{1}{2} \int G(x, u)\right) .
\end{aligned}
$$

We observe that

$$
\begin{equation*}
\nabla I(u)=u-i^{*}\left[(1+c) \Delta u+b u^{+}+g(x, u)\right] . \tag{2.1}
\end{equation*}
$$

Here $i^{*}: L^{2}(\Omega) \rightarrow H$ is a compact operator. (i^{*} is the adjoint of the immersion $i: H \hookrightarrow L^{2}(\Omega)$). Suppose $\left\{u_{k}\right\}_{k=1}^{\infty} \subset H$ is the (PS) sequence, i.e $\left\{I\left(u_{k}\right)\right\}_{k=1}^{\infty}$ bounded and $\nabla I\left(u_{k}\right) \rightarrow 0$ in H. It is enough to prove that $\left\{u_{k}\right\}_{k=1}^{\infty}$ is bounded(because $i^{*}: L^{2}(\Omega) \rightarrow H$ is a compact operator.). By contradiction we suppose that $\lim _{k}\left\|u_{k}\right\|_{H}=+\infty$. Up to a subsequence we can assume that $\lim _{k} \frac{u_{k}}{\left\|u_{k}\right\|_{H}}=u$ weakly in H, strongly in $L^{2}(\Omega)$ and pointwise in Ω. By (2.1) we deduce

$$
\begin{aligned}
\left(\nabla I\left(u_{k}\right), \frac{u_{k}}{\left\|u_{k}\right\|_{H}}\right)_{H}= & \frac{1}{\left\|u_{k}\right\|_{H}}\left(\int\left|\Delta u_{k}\right|^{2}-c \int\left|\nabla u_{k}\right|^{2}\right) \\
& -b \int \frac{u^{+}{ }_{k}^{2}-g\left(x, u_{k}\right) u_{k}}{\left\|u_{k}\right\|_{H}} \\
= & \frac{2 I\left(u_{k}\right)}{\left\|u_{k}\right\|_{H}}+\frac{1}{\left\|u_{k}\right\|_{H}} \int 2 G\left(x, u_{k}\right)-g\left(x, u_{k}\right) u_{k}
\end{aligned}
$$

and, passing to the limit, we get

$$
\lim \frac{1}{\left\|u_{k}\right\|_{H}} \int 2 G\left(x, u_{k}\right)-g\left(x, u_{k}\right) u_{k}=0
$$

Moreover by (g1) we get

$$
\frac{1}{\left\|u_{k}\right\|_{H}} \int 2 G\left(x, u_{k}\right)-g\left(x, u_{k}\right) u_{k} \leq \int a_{0} \frac{\left(u_{k}\right)^{+}}{\left\|u_{k}\right\|_{H}}-\int \frac{a_{1}}{\left\|u_{k}\right\|_{H}}
$$

and so passing to the limit, we get $\int a_{0}\left(u_{k}\right)^{+} \geq 0$,since $a_{0} \neq 0$. Hence $u \geq 0$ a.e. in Ω and $u \not \equiv 0$. From $\nabla I\left(u_{k}\right) \rightarrow 0$ in H, we get

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{\nabla I\left(u_{k}\right)}{\left\|u_{k}\right\|_{H}}= & \lim _{k \rightarrow \infty}\left\{\frac{u_{k}}{\left\|u_{k}\right\|_{H}}-i^{*}\left[(1+c) \frac{\Delta u_{k}}{\left\|u_{k}\right\|_{H}}\right.\right. \\
& \left.-b \frac{u_{k}}{\left\|u_{k}\right\|_{H}}-\frac{g\left(x, u_{k}\right)}{\left\|u_{k}\right\|_{H}}\right\} \\
= & 0
\end{aligned}
$$

strongly in H. Here $i^{*}: L^{2}(\Omega) \rightarrow H$ is a compact operator. So the bounded sequence $\left.\lim \frac{u_{k}}{\left\|u_{k}\right\|_{H}}\right\}_{k \in N}$ converges strongly in H. Hence $u-$ $i^{*}[(1+c) \Delta u-b u]=0$. This implies that $u \geq 0$ is a nontrivial solution of

$$
\begin{equation*}
\Delta^{2} u+c \Delta u=b u \tag{2.2}
\end{equation*}
$$

which contradicts to the equation $(2.2)\left(b \neq \Lambda_{i}(c), b \neq 0\right)$ that has only the trivial solution. So we discovered that $\left\{u_{k}\right\}_{k=1}^{\infty}$ is bounded in H, hence there exists a subsequence $\left\{u_{k j}\right\}_{k j=1}^{\infty}$ and $u \in H$ with $u_{k j} \rightarrow u$ in H.

To prove Theorem 1.1 we need the following two lemmas.
Lemma 2.3. If g satisfies (g2), then we have $\lim _{r \rightarrow+\infty} I\left(-r e_{1}\right)=-\infty$.
Proof. From definition of I and condition (g2), since $\Lambda_{1}(c)<0$ we get

$$
\begin{aligned}
I\left(-r e_{1}\right) & =\frac{1}{2} \Lambda_{1}(c) r^{2} \int e_{1}^{2}-\frac{b}{2} \int\left[\left(-r e_{1}\right)^{2}-\frac{1}{2} \int G\left(-r e_{1}\right)\right. \\
& \leq \frac{1}{2}\left(\Lambda_{1}(c)-\epsilon\right) r^{2} \int e_{1}^{2} \rightarrow-\infty
\end{aligned}
$$

with $r \rightarrow \infty$, which proves our claim.
Consider the values of I in the set $\Gamma_{\rho}(H)$, where
$\Gamma_{\rho}(H)=\left\{u_{1}+\left.u_{2} \in \operatorname{span}\left\{e_{1}\right\} \oplus H_{1}^{\perp}\left|\int u_{1}^{2}+\int\left(\Delta u_{2}\right)^{2}-c \int\right| \nabla u_{2}\right|^{2} \leq \rho^{2}\right\}$.
The set $\Gamma_{\rho}(H)$ is homeomorphic to a ball in H, whose boundary is the set
$\gamma_{\rho}(H)=\left\{u_{1}+\left.u_{2} \in \operatorname{span}\left\{e_{1}\right\} \oplus H_{1}^{\perp}\left|\int u_{1}^{2}+\int\left(\Delta u_{2}\right)^{2}-c \int\right| \nabla u_{2}\right|^{2}=\rho^{2}\right\}$.

Lemma 2.4. Assume $b<\Lambda_{1}(c)$ and (g3). Then there exists a small $\rho>0$ such that

$$
\inf _{u \in \gamma_{\rho}(H)} I(u)>0 .
$$

Proof. For any $u \in H$, we can write u as $u=u_{1}+u_{2}$, where $u_{1} \in$ $H_{1}, u_{2} \in H_{1}^{\perp}$. By (g3), for sufficiently small $\rho>0$, we get

$$
\begin{aligned}
I(u) \geq & \frac{1}{2}\left(\int\left(\Delta u_{1}\right)^{2}-c \int\left|\nabla u_{1}\right|^{2}\right)+\frac{1}{2}\left(\int\left(\Delta u_{2}\right)^{2}-c \int\left|\nabla u_{2}\right|^{2}\right) \\
& -\frac{b}{2} \int u_{1}^{2}-\frac{b}{2} \int u_{2}^{2} \\
& -\frac{1}{2}\left(\left\|u_{1}\right\|_{H}^{2}+\left\|u_{2}\right\|_{H}^{2}\right) \cdot o\left(\|u\|_{H}\right) \\
\geq & \frac{1}{2}\left(\Lambda_{1}(c)-b-c_{1} \cdot o\left(\|u\|_{H}\right)\right) \int u_{1}^{2} \\
& +\frac{1}{2}\left(1-c_{2} \cdot o\left(\|u\|_{H}\right)\right)\left(\int\left(\Delta u_{2}\right)^{2}-c \int\left|\nabla u_{2}\right|^{2}\right)>0
\end{aligned}
$$

for some positive constants c_{1}, c_{2}. This proves the lemma.

Proof of Theorem 1.1

Since $\lambda_{1}<c<\lambda_{2}, b<\Lambda_{1}(c)$, by Lemma 2.4, there is a small $\rho>0$ such that $\inf _{u \in \gamma_{\rho}(H)} I(u)>0$. From the definition of I, we have $I(0)=0$ with $0 \in \Gamma_{\rho}(H)$. Set $A=\left\{-r e_{1}, 0\right\}, B=\gamma_{\rho}(H)$. Then A links B. By Lemma 2.3 there is sufficiently large $r>0$ such that $-r e_{1} \notin \Gamma_{\rho}(H)$ and $I\left(-r e_{1}\right)<0$. And thus $\sup _{A} I(u)<\inf _{B} I(u)$. By the Mountain Pass Theorem I possesses a critical value $c_{1} \geq \inf _{u \in \gamma_{\rho}(H)} I(u)>0$ and $0=\min _{u \in \Gamma_{\rho}(H)} I(u)$. So I has two critical values. Hence the problem (1.1) has at least two solutions, one of which is nontrivial.

Lemma 2.5. Suppose $b>0$ and g satisfies (g4), then there exists a small $\rho>0$ such that $\sup _{\|u\|=\rho, u \in H_{2}} I(u)<0$.

Proof. From the condition of (g4) that there exist constant $\alpha>0$ such that $\frac{g(x, u)}{u} \leq \alpha<\Lambda_{1}(c)$ for $x \in \Omega$. Since g is subcritical growth, we get $G(x, u) \leq \frac{1}{2} \alpha u^{2}-a|u|^{s}$, and $a>0, s \in\left(2,2^{*}\right)$. So for sufficiently
small $\|u\|$ we have,

$$
\begin{aligned}
I(u) & \leq \frac{1}{2}\left(\int(\Delta u)^{2}-c|\nabla u|^{2}\right)-\frac{b}{2} \int u^{+2}-\frac{1}{2} \int \alpha u^{2}+a \int|u|^{s} \\
& \leq \frac{1}{2}\left(\int(\Delta u)^{2}-c|\nabla u|^{2}\right)-\frac{1}{2} \int \alpha u^{2}+\int a|u|^{s} \\
& \leq \frac{1}{2}\left(\Lambda_{2}(c) u^{2}-\alpha\right) \int u^{2}+a \int|u|^{s}
\end{aligned}
$$

for some positive constant $\alpha>\Lambda_{2}(c)$. The norms $\|\cdot\|_{H}$ and $\|\cdot\|_{L^{2}(\Omega)}$ in H_{2} are equivalent, since $\operatorname{dim} H_{2}=2$. Condition $\alpha>\Lambda_{2}(c)$ implies that $\Lambda_{2}(c) u^{2}-\alpha<0$. So, for small $\rho>0$ we have $\sup _{\|u\|=\rho, u \in H_{2}} I(u)<0$.

Lemma 2.6. Let $\lambda_{1}<c<\lambda_{2}$ and

$$
T=\max \left\{\left.\int\left(u^{+}\right)^{2}\left|u \in H_{1}^{\perp}, \int(\Delta u)^{2}-c\right| \nabla u\right|^{2}=1\right\} .
$$

Then we have $T<\frac{1}{\Lambda_{2}(c)}$.
Proof. We know that $\int(\Delta u)^{2}-c|\nabla u|^{2} \geq \Lambda_{2}(c) \int u^{2} \geq \Lambda_{2}(c) \int\left(u^{+}\right)^{2}$ for $u \in H_{1}^{\perp}$. Hence $T \leq \frac{1}{\Lambda_{2}(c)}$. Suppose $T=\frac{1}{\Lambda_{2}(c)}$. Then there exists a sequence $\left\{u_{k}\right\}_{k \in N}$ in H_{1}^{\perp} such that $\int(\Delta u)^{2}-c|\nabla u|^{2}=1$ and $\lim \int\left(u_{k}^{+}\right)^{2}=\frac{1}{\Lambda_{2}(c)}$. We have $\lim u_{k}=u$ in $L^{2}(\Omega)$ and $\int\left(u^{+}\right)^{2}=\frac{1}{\Lambda_{2}(c)}$. Since $0 \leq \int u^{2}=\int\left(u^{+}\right)^{2}+\int\left(u^{-}\right)^{2} \leq \frac{1}{\Lambda_{2}(c)}$, we have $u^{-}=0$. This is a contradiction.

From the condition of (g5) that there exist constant $\beta>0$ such that $\frac{g(x, u)}{u} \leq \beta<\Lambda_{2}(c)$ for $x \in \Omega$, and exist $M>0$ and for $|u| \geq M$ we have $G(x, u) \leq \frac{1}{2} \beta u^{2}-b$, and $b>0$.

Lemma 2.7. Suppose g satisfies (g5) and $b>\frac{1-\beta}{T}$. Then there exists a large $R>0$ such that
$\inf \left\{\left.I(u)\left|u=\sigma e_{2}+v, \sigma \geq 0, v \in H_{2}^{\perp}, \int(\Delta u)^{2}-c \int\right| \nabla u\right|^{2}=R^{2}\right\}>0$.

Proof. Under the assumptions of (g5) there exists $\beta>0$ and $b>0$ such that for $\|u\| \geq R$, we have

$$
\begin{aligned}
I\left(v+\sigma e_{2}\right)= & \frac{1}{2}\left(\int\left(\Delta\left(v+\sigma e_{2}\right)\right)^{2}-c \int\left|\nabla\left(v+\sigma e_{2}\right)\right|^{2}\right) \\
& -\frac{b}{2} \int\left(v+\sigma e_{2}\right)^{+2}+\frac{b}{2} \int G\left(v+\sigma e_{2}\right) \\
\geq & \frac{1}{2}\left(\int(\Delta u)^{2}-c \int|\nabla u|^{2}\right)-\frac{b}{2} \int\left(u^{+}\right)^{2} \\
& -\int \frac{1}{2}\left(\beta u^{2}-b|u|^{s}\right) \\
\geq & \frac{1}{2}(1-b T-\beta)\left(\int(\Delta u)^{2}-c \int|\nabla u|^{2}\right)+b|\Omega| .
\end{aligned}
$$

Since $b>\frac{1-\beta}{T}$, the argument holds for large $R>0$.
Proof of Theorem 1.2
Since $b=\max \left\{0, \frac{1-\beta}{T}\right\}$ and g satisfies (g4),(g5) by Lemma 2.5 and 2.6 there exist $R>\rho>0$ such that

$$
\sup _{\|u\|=\rho, u \in H_{2}} I(u)<0<\inf _{v \in \Sigma_{R}\left(e_{2}, H_{2} \perp\right)} I(v),
$$

where $\Sigma_{R}\left(e_{2}, H_{2}{ }^{\perp}\right)$ is the boundary of the set

$$
\left\{I(u)\left|u=\sigma e_{2}+v\right| \sigma \geq 0, v \in H_{2}, \int(\Delta u)^{2}-c \int|\nabla u|^{2} \leq R^{2}\right\} .
$$

By the Variational Linking Theorem $I(u)$ has at least two nonzero critical values c_{1}, c_{2} such as

$$
c_{1} \leq \sup _{\|u\|=\rho, u \in H_{2}} I(u)<0<\inf _{v \in \Sigma_{R}\left(e_{2}, H_{2} \perp\right)} I(v) \leq c_{2} .
$$

Therefore, (1.1) has at least two nontrivial solutions. This implies that (1.1) has at least three solutions.

3. Variational setting

To introduce a Variational Linking Theorem, we define the following sets.

Definition 3.1. Let X be a Hilbert space, $Y \subset X, \rho>0$, and $e \in X \backslash Y, e \neq 0$. Set

- $B_{\rho}(Y)=\left\{x \in Y \mid\|x\|_{X} \leq \rho\right\}$,
- $S_{\rho}(Y)=\left\{x \in Y \mid\|x\|_{X}=\rho\right\}$,
- $\Delta_{\rho}(e, Y)=\left\{\sigma e+v \mid \sigma \geq 0, v \in Y,\|\sigma e+v\|_{X} \leq \rho\right\}$,
- $\Sigma_{\rho}(e, Y)=\left\{\sigma e+v \mid \sigma \geq 0, v \in Y,\|\sigma e+v\|_{X}=\rho\right\} \cup\{v \mid v \in$ $\left.Y,\|v\|_{X} \leq \rho\right\}$.

We recall a theorem of existence of two critical levels for a functional which is a variation of linking theorem.

Theorem 3.2. (A variation of Linking.) Let X be a Hilbert space which is topological direct sum of the subspaces X_{1}, X_{2}. Let $f \in$ $C^{1}(X, R)$. Moreover assume
(a) $\operatorname{dim} X_{1}<+\infty$,
(b) there exist $\rho>0, R>0$ and $e \in X_{1}, e \neq 0$ such that $\rho<R$ and $\sup _{S_{\rho}\left(X_{1}\right)} f<\inf _{\Sigma_{R}\left(e, X_{2}\right)} f$,
(c) $-\infty<a=\inf _{\Delta_{R}\left(e, X_{2}\right)} f$,
(d) $(P S)_{c}$ condition holds for any $c \in[a, b]$ where $b=\sup _{B_{\rho}\left(X_{1}\right)} f$. Then there exist at least two critical levels c_{1} and c_{2} for the functional f such that

$$
\inf _{\Delta_{R}\left(e, X_{2}\right)} f \leq c_{1} \leq \sup _{S_{\rho}\left(X_{1}\right)} f<\inf _{\Sigma_{R}\left(e, X_{2}\right)} f \leq c_{2} \leq \sup _{B_{\rho}\left(X_{1}\right)} f
$$

References

[1] Q. H. Choi and Yinghua Jin, Nonlinearity and nontrivial solutions of fourth order semilinear elliptic equations. Journ. Math. Anal. Appl. 29 (2004),224-234.
[2] Q. H. Choi, T. Jung and P. J. McKenna, The study of a nonlinear suspension bridge equation by a variational reduction method. Appl. Anal. 50 (1993),71-90.
[3] H. Hofer, On strongly indefinite functionals with applications. Trans. Amer. Math. Soc. 275 (1983), 185-214.
[4] L. Humphreys, Numerical and theoretical results on large amplitude periodic solutions of a suspension bridge equation. ph. D. thesis, University of Connecticut (1994).
[5] P. J. McKenna and W. Walter, Nonlinear Oscillations in a Suspension Bridge. Arch. Rational Mech. Anal. 98 (1987), 167-177.
[6] P. J. McKenna and W. Walter, Global bifurcation and a Theorem of Tarantello. Journ. Math. Anal. Appl. 181 (1994), 648-655.
[7] A. M. Micheletti and C. Saccon, Multiple nontrivial solutions for a floating beam via critical point theory. J. Differential Equations, 170 (2001), 157-179.
[8] S. Li and A. Squlkin, Periodic solutions of an asymptotically linear wave equation. Nonlinear Analysis, 1 (1993), 211-230.
[9] J. Q. Liu, Free vibrations for an asymmetric beam equation. Nonlinear Analysis, 51 (2002), 487-497.
[10] Tarantello G, A note on a semilinear elliptic problem. Differential and Integral Equations. 5 (1992), 561-566.

School of Sciences
Jiangnan University
1800 Lihu Road Wuxi Jiangsu Province
China 214122
E-mail: yinghuaj@empal.com

Department of Mathematics
Inha University
Incheon 402-751, Korea
E-mail: qheung@inha.ac.kr
School of Sciences
Jiangnan University
1800 Lihu Road Wuxi Jiangsu Province
China 214122

[^0]: Received October 11, 2009. Revised November 20, 2009.
 2000 Mathematics Subject Classification: 35J35.
 Key words and phrases: Dirichlet boundary condition, linking theorem, eigenvalue.

 This work was Supported by PIRT of Jiangnan University.
 *Corresponding author.

