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SEMI-QUASITRIANGULARITY OF TOEPLITZ
OPERATORS WITH QUASICONTINUOUS SYMBOLS

IN HyouN KiM AND WOO YOUNG LEE

ABSTRACT. In this note we show that if T3, is a Toeplitz operator
with quasicontinuous symbol ¢, if  is an open set containing the
spectrum o(T,), and if H(2) denotes the set of analytic functions
defined on €2, then the following statements are equivalent:

(a) T, is semi-quasitriangular.

(b) Browder’s theorem holds for f(T) for every f € H(Q).

(c) Weyl’s theorem holds for f(T,,) for every f € H(S).

(d) 0(Tfoyp) = f(o(Ty)) for every f € H(S).

1. Introduction

Farenick and Lee ([5, Theorem 3.7]) showed that if T, is a Toeplitz
operator with continuous symbol ¢ such that the winding number of ¢
with respect to each hole of ¢(T) is nonnegative (or is nonpositive), then
o(Tfop) = f(o(T,)) for every analytic function f defined on an open set
containing o (T,). In this note we extend this result to obtain the follow-
ing theorem: if T,, is a Toeplitz operator with quasicontinuous symbol
¢, then T, is semi-quasitriangular if and only if o0(T%.,) = f(0(T,,)) for
every analytic function f defined on an open set containing the spectrum
of T,.

Let £(#H) and X(H) denote the algebra of bounded linear operators
and the ideal of compact operators on a complex Hilbert space H, and
let ™ denote the canonical map L(H) — L(H)/K(H). If T € L(H) is
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a Fredholm operator, that is, if 7(T) is invertible in L(H)/K(H), then
ker T and ker T* are finite-dimensional and the index of 7" is the integer

ind (T') = dim ker T — dim ker T™*.

Those Fredholm operators that have index zero are called Weyl oper-
ators. The essential spectrum ¢.(T) and the Weyl spectrum w(T) are
defined as follows [6]:

oe(T) = {A € C: T — Al is not Fredholm };

w(T)={Ae€ C:T — Al is not Weyl} .
An operator T' € L(H) is called Browder if it is Fredholm “of finite ascent
and descent.” Recall that an operator T has finite ascent if there is a
positive integer k& for which ker T% = ker T**" for all positive integers
n, and T has finite descent if there is a positive integer m such that
the range of T equals the range of 7" for every positive integer n.
An operator T is a Browder operator if 7' is Fredholm and T — A\ is

invertible for sufficiently small A # 0 in C (6, Theorem 7.9.3]). The
Browder spectrum ¢,(T") of T is defined by

os(T) ={X € C: T — Al is not Browder} :

evidently
0e(T) Cw(T) C 0y(T) = 0.(T) U ace o(T),

where we write acc(K) for the accumulation points of K C C. If we
write iso(K') = K \ acc(K) and

(1) moo(T) = {A € is0 o(T) : 0 < dim (T — A/)~1(0) < oo}
for the isolated eigenvalues of finite multiplicity, and
(2) poo(T) = o(T) \ 0u(T)
for the Riesz points of T, then we have
is00(T)\ 0¢(T) = iso(T) \ w(T) = poo(T) C moo (7).

The authors of [7] and [8] use the notation of (1) for the concept of (2).
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DEFINITION 1. We say that Weyl’s theorem holds for T € L(H) if
o(T)\ w(T) = moo(T),
and that Browder’s theorem holds for T if
o(T)\w(T) = poo(T).

It is familiar ([1], [2]) that Weyl’s theorem holds for all seminormal op-
erators and all Toeplitz operators. Evidently “Weyl’s theorem” implies
“Browder’s theorem”. Recently, Browder’s theorem has been considered
in [7], (8] and [10]. We begin with:

LEMMA 2. If T € L(H) then the following are equivalent:

(a) ind (T — M) ind (T — puI) > 0 for each pair A\, € C\ 0.(T).
(b) fw(T) =w f(T) for each analytic function f defined on an open
set containing o(T)).
Further if Browder’s theorem holds for T € L(#) then

Browder’s theorem holds for f(T) <= fw(T)=w f(T).

ProOF. By Theorem 5 of [7], the condition (a) is equivalent to the
condition that pw(T") = wp(T') for every polynomial p. But by an ar-
gument of Oberai {12, Theorem 2], we have that pw(T) = wp(T) if and
only if fw(T) = w f(T). The proof of the second assertion is taken
straight from a slight modification of the proof of [7, Theorem 4] which
works with a polynomial p. O

We can rewrite the condition (a) in Lemma 2 in terms of the “spec-
tral picture” ([13, Definition 1.22]) of the operator T, denoted SP(T'),
which consists of the set 0.(7T), the collection of holes and pseudoholes in
o.(T), and the indices associated with these holes and pseudoholes. Thus
if SP(T) has no pseudohole, then the condition (a) in Lemma 2 is ([13,
Definition 4.8]) the condition that T ¢ L(H) be “semi-quasitriangular”
in the sense that either 7" or T* is quasitriangular. Recall ([13, Theorem
1.31}) that by the work of Apostol, Foias, and Voiculescu, T' is quasitri-
angular if and only if SP(T) has no hole or pseudohole associate with a
negative number.

The following lemma shows that the semi-quasitriangularity of essen-
tially normal operators has a close relation to Browder’s theorem.
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LEMMA 3. If T € L(H) is essentially normal (ie., T*T — TT* €
K(H)) and if Browder’s theorem holds for T, then the following are
equivalent:

(a) T is semi-quasitriangular.
(b) Browder’s theorem holds for f(T),

where f is an analytic function on an open set containing o(T).

PROOF. If T is essentially normal then by Proposition 2.16 of [13],
for each A € C,

T — Al is Fredholm <= T — Al is semi-Fredholm,

in the sense that ran (T'— /) is closed and either dim (T'—AI)~1(0) < oo
or dim (T — AI})*"1(0) < oo. This implies that SP(T) has no pseudo-
hole. Thus it follows from the remark below Lemma 2 that the semi-
quasitriangularity of T' is equivalent to the condition (a) in Lemma 2.
But since Browder’s theorem holds for T, the desired equivalence follows
from Lemma 2. O

REMARK 4. (a) The condition “Browder’s theorem holds for 7" is
essential in Lemma 3: even though 7 is essentially normal and semi-
quasitriangular (even quasitriangular), Browder’s theorem may not hold
for T. For an example, let H = £y © ¢y and let T = U & U*, where U
is the unilateral shift on #;. Then T is essentially normal. Further since
o(T) = clD (the closed unit disk) and w(T) = T (the unit circle), it
follows that T is quasitriangular, but Browder’s theorem does not hold
for T because o(T) \ w(T) = D.

(b) Note that Weyl’s theorem may not hold for ' € £L(#) even though
T is essentially normal and semi-quasitriangular, and Browder’s theorem
holds for T. For example, if T : £5 — £ is defined by

1 1 1
T(-’El,(EQ,CL‘S, cte ) = (51.2) 5333, Z:E4a o )’

then, evidently, it is essentially normal and quasitriangular and further-
more

o(T) = w(T) = moo(T) = {0} and  poo(T) = 0.
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We review here a few essential facts concerning Toeplitz operators,
using (3], [11] as a general reference. The Hilbert space L?(T) has a
canonical orthonormal basis given by the trigonometric functions e, (z) =
2™, for all n € Z, and the Hardy space H2(T) is the closed linear span
of {en : n = 0,1,...}. If P denotes the projection operator L?(T) —
H?(T), then for every ¢ € L*(T), the operator T, on H*(T) defined
by T,g = P(pg) for all g € H%(T) is called the Toeplitz operator with
symbol . Every Toeplitz operator has connected spectrum and essential
spectrum, and o(T,,) = w(T,) (cf. 2]). The sets C(T) of all continuous
complex-valued functions on T and H*°(T) = L*(T)NH?(T) are Banach
algebras. Recall that the subspace H* + C(T) is a closed subalgebra of
L*®(T) and that

(3) TyT, — Ty, € K(H?) for every ¢ € H® + C(T) and ¢ € L>®(T);

(4)

T, is Fredholm if and only if (pﬁl € H*® ~ C(T) for every p € H® + C(T).

Recall also that the elements of the closed selfadjoint subalgebra QC,
which is defined to be

QC = (H® + C(T)) n (H® + C(T)),

are called quasicontinuous functions.
We now have:

THEOREM 5. If ¢ € H* + C(T), if Q is an open set containing the
spectrum o (T,,), and if H(Y) denotes the set of analytic functions defined
on (2, then the following statements are equivalent:

(a) Browder’s theorem holds for f(T,) for every f € H(Q).

(b) Weyl’s theorem holds for f(T,) for every f € H().

(¢) 0(Tfop) = f(o(T,)) for every f € H().
In particular, if ¢ € QC, then each condition of the above is equivalent
to the following:

(d) T, is semi-quasitriangular.
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PROOF. We first claim that
(5) p € L(T) == woo(f(Ty)) = 0.

If f is a constant function or ¢ = A for some A € C, then (5) is evi-
dent. Thus we suppose f is a nonconstant analytic function and ¢ is a
nonconstant function. Observe that o(f(7,)) = f(¢(T,)) is connected
because o(7T,) is connected. Assume o(f(7,,)) is a singleton set. Then
o(T,) must also be a singleton set: if it were not so then by the Identity
Theorem in the elemetary complex analysis, f would be a constant func-
tion. But since the only quasinilpotent Toeplitz operator is 0, we must
have that ¢ = A for some A € C, a contradiction. Therefore o(f(7T,,))
is a connected set which is not a singleton set. Thus o(f(7,)) has no
isolated points. This proves (5). Now the equivalence of (a) and (b) im-
mediately follows from (5). For the equivalence of (b) and (c), observe
by (4) that, for every A € 0(T,,), ¢ — A is invertible in H>® + C(T); hence,
(e = A)"' € H® + C(T). Then, by (3), we have that if A ¢ o(T,) then

To-aTi-2y-1 — I € K(H?), sothat T !, —T(,_ -1 € K(H?).
Therefore we have that, for A\, € C,
Tw—uTq;l)\ ~Tompy(p-n)-1 € K(H?) whenever A ¢ o(T,).

The arguments above extend to rational functions to yield: if r is any
rational function with all of its poles outside of 7(T},), then r(T,) —
Trop € K(H?). Suppose that f is an analytic function on an open set
containing o(T,,). Now applying Runge’s theorem with f gives

(6) Tfo<p - f(Tlp) € K(H2)

Because the Weyl spectrum is stable under the compact perturbations,
it follows from (6) that

(7) w(f(Ty)) = w(Trop) = o(Trop)-

But since, by (5), moo(f(T})) = 0, it follows from (7) that Weyl’s the-
orem holds for f(T,) if and only if w(f(7T,)) = o(f(T,)) if and only if
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0(Tfop) = f(o(T,)). This gives the equivalence of (b) and (c). For the
second assertion, it suffices to prove the equivalence of (d) and (a). If
¢ € QC then we can see that the self-commutator [Tw,T;] is compact,
so that T, is essentially normal. But since Browder’s theorem holds

for every Toeplitz operator, the equivalence of (d) and (a) follows from
Lemma 3. O

If ¢ € L*°(T) has the property that (), cl[¢(Ao — €, X0 + €)] is
contained in some line segment Ly, for each Ag ¢ T, then we call ¢
Douglas function ([4], [5]). Then the conditions (a), (b), and (d) in
Theorem 5 are also equivalent for Toeplitz operaters T, with Douglas
symbol ¢ because [Ty, Ty5] € K(H?) (cf. the footnote on page 23 of [4]).
We believe this argument can be extended for Toeplitz operators with
“generalized Douglas symbols” introduced in [9].
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