• 제목/요약/키워드: Omega theorem

검색결과 65건 처리시간 0.017초

THE COHEN TYPE THEOREM FOR S-⁎ω-PRINCIPAL IDEAL DOMAINS

  • Lim, Jung Wook
    • East Asian mathematical journal
    • /
    • 제34권5호
    • /
    • pp.571-575
    • /
    • 2018
  • Let D be an integral domain, ${\ast}$ a star-operation on D, and S a (not necessarily saturated) multiplicative subset of D. In this article, we prove the Cohen type theorem for $S-{\ast}_{\omega}$-principal ideal domains, which states that D is an $S-{\ast}_{\omega}$-principal ideal domain if and only if every nonzero prime ideal of D (disjoint from S) is $S-{\ast}_{\omega}$-principal.

AN ANALOGUE OF WIENER MEASURE AND ITS APPLICATIONS

  • Im, Man-Kyu;Ryu, Kun-Sik
    • 대한수학회지
    • /
    • 제39권5호
    • /
    • pp.801-819
    • /
    • 2002
  • In this note, we establish a translation theorem in an analogue of Wiener space (C[0,t],$\omega$$\phi$) and find formulas for the conditional $\omega$$\phi$-integral given by the condition X(x) = (x(to), x(t$_1$),…, x(t$_{n}$)) which is the generalization of Chang and Chang's results in 1984. Moreover, we prove a translation theorem for the conditional $\omega$$\phi$-integral.l.

SEMI-QUASITRIANGULARITY OF TOEPLITZ OPERATORS WITH QUASICONTINUOUS SYMBOLS

  • Kim, In-Hyoun;Lee, Woo-Young
    • 대한수학회논문집
    • /
    • 제13권1호
    • /
    • pp.77-84
    • /
    • 1998
  • In this note we show that if $T_{\varphi}$ is a Toeplitz operator with quasicontinuous symbol $\varphi$, if $\omega$ is an open set containing the spectrum $\sigma(T_\varphi)$, and if $H(\omega)$ denotes the set of analytic fuctions defined on $\omege$, then the following statements are equivalent: (a) $T_\varphi$ is semi-quasitriangular. (b) Browder's theorem holds for $f(T_\varphi)$ for every $f \in H(\omega)$. (c) Weyl's theorem holds for $f(T_\varphi)$ for every $f \in H(\omega)$. (d) $\sigma(T_{f \circ \varphi}) = f(\sigma(T_varphi))$ for every $f \in H(\omega)$.

  • PDF

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • 제46권4호
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

A SIMPLE PROOF OF HILBERT BASIS THEOREM FOR *ω-NOETHERIAN DOMAINS

  • Lim, Jung Wook;Oh, Dong Yeol
    • Korean Journal of Mathematics
    • /
    • 제21권2호
    • /
    • pp.197-201
    • /
    • 2013
  • Let D be an integral domain with quotient field K, * a star-operation on D, $GV^*(D)$ the set of nonzero finitely generated ideals J of D such that $J_*=D$, and $*_{\omega}$ a star-operation on D defined by $I_{*_{\omega}}=\{x{\in}K{\mid}Jx{\subseteq}I\;for\;some\;J{\in}GV^*(D)\}$ for all nonzero fractional ideals I of D. In this article, we give a simple proof of Hilbert basis theorem for $*_{\omega}$-Noetherian domains.

EXTENSIONS OF MINIMIZATION THEOREMS AND FIXED POINT THEOREMS ON A $D^*$-METRIC SPACE

  • Park, Sung-Bok;Ume, Jeong-Sheok
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제18권1호
    • /
    • pp.13-29
    • /
    • 2011
  • In this paper, we introduce the new concept of ${\omega}-D^*$-distance on a $D^*$-metric space and prove a non-convex minimization theorem which improves the result of Caristi[1], ${\'{C}}iri{\'{c}}$[2], Ekeland[4], Kada et al.[5] and Ume[8, 9].

AN EXTENSION OF THE FUGLEDGE-PUTNAM THEOREM TO $\omega$-HYPONORMAL OPERATORS

  • Cha, Hyung Koo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권4호
    • /
    • pp.273-277
    • /
    • 2003
  • The Fuglede-Putnam Theorem is that if A and B are normal operators and X is an operator such that AX = XB, then $A^{\ast}= X. In this paper, we show that if A is $\omega$-hyponormal and $B^{\ast}$ is invertible $\omega$-hyponormal such that AX = XB for a Hilbert-Schmidt operator X, then $A^{\ast}X = XB^{\ast}$.

  • PDF

EXISTENCE OF NONTRIVIAL SOLUTIONS OF A NONLINEAR BIHARMONIC EQUATION

  • Jin, Yinghua;Choi, Q-Heung;Wang, Xuechun
    • Korean Journal of Mathematics
    • /
    • 제17권4호
    • /
    • pp.451-460
    • /
    • 2009
  • We consider the existence of solutions of a nonlinear biharmonic equation with Dirichlet boundary condition, ${\Delta}^2u+c{\Delta}u=f(x, u)$ in ${\Omega}$, where ${\Omega}$ is a bounded open set in $R^N$ with smooth boundary ${\partial}{\Omega}$. We obtain two new results by linking theorem.

  • PDF

EXISTENCE OF SOLUTIONS FOR GRADIENT TYPE ELLIPTIC SYSTEMS WITH LINKING METHODS

  • Jin, Yinghua;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제20권1호
    • /
    • pp.65-70
    • /
    • 2007
  • We study the existence of nontrivial solutions of the Gradient type Dirichlet boundary value problem for elliptic systems of the form $-{\Delta}U(x)={\nabla}F(x,U(x)),x{\in}{\Omega}$, where ${\Omega}{\subset}R^N(N{\geq}1)$ is a bounded regular domain and U = (u, v) : ${\Omega}{\rightarrow}R^2$. To study the system we use the liking theorem on product space.

  • PDF