• Title/Summary/Keyword: Omega Fatty Acid

Search Result 377, Processing Time 0.035 seconds

Analysis of the Oxidative Stress-Related Transcriptome from Capsicum annuum L.

  • Lee, Hyoung-Seok;Lee, Sang-Ho;Kim, Ho-Bang;Lee, Nam-Houn;An, Chung-Sun
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.472-482
    • /
    • 2010
  • For the massive screening of the genes related to oxidative stress, a cDNA library was constructed from hot pepper (Capsicum annuum L. cv. Nockkwang) leaves treated with methyl viologen. From this library, 1,589 cDNA clones were sequenced from their 5' ends. The sequences were clustered into 1,252 unigenes comprised of 152 contigs and 1,100 singletons. Similarity search against NCBI protein database identified 1,005 ESTs (80.3%) as Known, 197 ESTs (15.7%) as Unknown, and 50 ESTs (3.99%) as No hit. In the ESTs, oxidative stress-related genes such as ascorbate peroxidase, catalase, and osmotin precursor were highly expressed. The cDNA microarray containing 1,252 unigenes was constructed and used to analyze their expression upon methyl viologen treatment. Analyses of the hybridization revealed that various stress-related genes such as peroxidase, tyrosine aminotransferase, and omega-6 fatty acid desaturase, were induced and some metabolism related genes such as aldolase and ketol-acid reductoisomerase, were repressed by methyl viologen treatment, respectively. The information from this study will be used for further study on the functional roles of oxidative stress-related genes and signaling network of oxidative stress in hot pepper.

Use of Fish Oil Nanoencapsulated with Gum Arabic Carrier in Low Fat Probiotic Fermented Milk

  • Moghadam, Farideh Vahid;Pourahmad, Rezvan;Mortazavi, Ali;Davoodi, Daryoush;Azizinezhad, Reza
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.309-323
    • /
    • 2019
  • Fish oil consists of omega-3 fatty acids which play an important role in human health. Its susceptibility to oxidation causes considerable degradation during the processing and storage of food products. Accordingly, encapsulation of this ingredient through freeze drying was studied with the aim of protecting it against environmental conditions. Gum arabic (GA) was used as the wall material for fish oil nanoencapsulation where tween 80 was applied as the emulsifier. A water-in-oil (W/O) emulsion was prepared by sonication, containing 6% fish oil dispersed in aqueous solutions including 20% and 25% total wall material. The emulsion was sonicated at 24 kHz for 120 s. The emulsion was then freeze-dried and the nanocapsules were incorporated into probiotic fermented milk, with the effects of nanocapsules examined on the milk. The results showed that the nanoparticles encapsulated with 25% gum arabic and 4% emulsifier had the highest encapsulation efficiency (EE) (87.17%) and the lowest surface oil (31.66 mg/100 kg). Using nanoencapsulated fish oil in fermented milk significantly (p<0.05) increased the viability of Lactobacillus plantarum as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents. The fermented milk sample containing fish oil nanoencapsulated with 25% wall material and 4% emulsifier yielded the greatest probiotic bacterial count (8.41 Log CFU/mL) and the lowest peroxide value (0.57 mEq/kg). Moreover, this sample had the highest EPA and DHA contents. Utilizing this nanoencapsulated fish oil did not adversely affect fermented milk overall acceptance. Therefore, it can be used for fortification of low fat probiotic fermented milk.

The Effect of Weight Ratio of Carbon Source to Nitrogen Source on toe Growth and the Composition of Fatty Acid of Thraustochytrium aureum ATCC 34304 (탄소원과 질소원의 무게비가 Thraustochytrium aureum ATCC 34304의 성장 및 지방산 조성 특성에 미치는 영향)

  • Kim Won-Ho;Park Seung-Hye;Song Sang-Kyu;Bae Kyung-Dong;Hur Byung-Ki
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.266-270
    • /
    • 2005
  • The effect of the weight ratio of carbon source to nitrogen source on the growth and the composition change of fatty acids of Thraustochytrium aureum ATCC 34304 was investigated. The cell concentration of 5 days' culture increased and then decreased according to the increase of C/N, The ratioes for the maximum biomass were unique respectively and distributed between 1 and 4 with the initial sugar concentration in the range of 5 g/L to 25 g/L. The biomass yield, $Y_{x/s}$ decreased along with the increase of C/N, but maintained a constant value 0.35 between 10 and 20. The composition of myristic acid $(C_{14:0})$, one component of the lipid synthesized by T. aureum, was not affected with the change of C/N, but the composition of palmitic acid $(C_{16:0})$ was around $20\%$ below 4 of C/N and decreased to $15\%$ according to C/N about 4. The compositions of oleic acid $(C_{18:1})$ and linoleic acid $(C_{18:2})$ increased from 0 to $20\%\;and\;7\%$ respectively. The composition of $\gamma-linoleic$ acid $(C_{18:3})$, however, reduced from $5\%\;to\;2\%$. EPA $(C_{20:5})$ and DPA $(C_{22:5})$ showed a tendency of reduction in the weight composition according to the increase of C/N, but DHA $(C_{22:6})$ had a trend maintaining an approximately constant value, around $40\%$, irrespective of the change of C/N.

Effect of Frying Methods under Reduced Pressures on the Oxidative Stability of Frying Oils (감압 튀김 방법이 산패 변화에 미치는 영향)

  • Lee, Bo-Bae;Lee, Jin-Won;Park, Jang-Woo;Chung, Yoon-Kyung;Lee, Hyun-Joo
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • This study investigated the oxidative stability of oils when dough was fried under a lower pressure than the ambient atmosphere. The pressure during the frying process was controlled at measures of 760, 560, 360 or 160 mmHg. The oil containing the dough was heated at $180^{\circ}C$ for 48 hours. Rancidity values, including acid value, peroxide value, fatty acid analysis, color changes, and browning of oil samples, were measured every 8 hours. As the frying process continued at all 4 pressure levels, the acid values (AV) increased. However, compared to the other pressure levels, the increase in AV was the least at 160 mmHg. In addition, the peroxide value at 160 mmHg was only 0.81 meq/kg compared to 1.52 meq/kg at 760 mmHg. For all pressure levels, stearic acid, oleic acid, ${\omega}$-6 linolenic acid were increased, while linoleic acid and ${\omega}$-3 linolenic acid were decreased. In terms of color, a-values representing redness were decreased, whereas b-values were increased as the frying proceeded. These results revealed that the oxidation of frying oil was decreased under reduced pressure condition. Thus, the usage of frying oil may be extended, owing to less oxidative concerns. This leads to a lower cost to the manufacturer, and furthermore, helps the environment by reducing industrial wastes.

Effect of n-6/n-3 fatty acid ratio on lipid metabolism in obesity model rats (n-6/n-3 지방산 비율이 비만 랫드의 지질대사에 미치는 영향)

  • Shin, Jong-Suh;Um, Kyung-Hwan;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.654-666
    • /
    • 2018
  • This study was determined the effects of dietary omega-6 and 3 fatty acid ratios (n-6/n-3, 0, 4:1, 15:1, 30:1) on lipid metabolism in obese model animal rats. Blood triacylglycerol, total cholesterol, LDL-C, glucose, ALT, AST, insulin, and leptin concentrations in n-6/n-3 group were decreased by 22.21, 20.60, 52.96, 15.71, 11.97, 9.13, 37.57, 45.98%, respectively, while HDL-C and phospholipid concentrations were increased by 28.38, 80.39% respectively, compared with control group, as especially in 4:1 group showed the greatest effect. SREPB-$1{\alpha}$ and SREPB-2 mRNA in liver tissues were down-regulated in n-6/n-3 group, but LPL-mRNA of PPARs in adipose tissue was up-regulated compared with control group. The adipocyte size in liver tissues was decreased in the order of n-6/n-3 ratio of 30:1, control, 15:1 groups, and the adipocyte size in adipose tissues was decreased in the order of n-6/n-3 ratio of control, 30:1, 15:1, 4:1 groups.

Biological Characteristics and Tissue Structure of a Crustose Coralline Lithophyllum Alga (해조류 무절산호조 혹돌잎의 생물학적 특성 및 조직구조)

  • Kang, Ji-Young;Benliro, Ianthe Marie P.;Lee, Ik-Joon;Choi, Ji-Young;Joo, Jin;Choi, Yoo Seong;Hwang, Dong Soo;Hong, Yong-Ki
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.341-346
    • /
    • 2013
  • The disappearance of seaweed flora in some rocky areas, which is known as algal whitening, barren ground, coralline flats, or deforested areas, is associated with some species of coralline algae. To determine the biological characteristics of a representative species of crustose coralline alga, the 18S rDNA gene was sequenced to identify the genus Lithophyllum. According to its morphological and distributional characteristics, it was deduced to be L. yessoense. Viability was measured using triphenyl tetrazolium chloride and showed high viability from December to February. Culture conditions of $16^{\circ}C$, a 16 hr light, 8 hr dark cycle, and 30 ${\mu}E/m^2/s$ light intensity were optimal for maintaining the viability of the alga for up to five days. Included in the fatty acids was 9.7% ${\omega}$-3 eicosapentaenoic acid. An electron microscopy scan of the surface structure revealed round craters about 3.6 ${\mu}m$ in diameter, which were covered with rough, irregular, and angular polygon-shaped structures about 1.0 to 3.7 ${\mu}m$ in size. Based on the composition and structure found in our study, biomimetic coralline alga might become an environmentally friendly antifouling material against the attachment of soft foulants.

Comparison of Soil Microbial Communities to Different Practice for Strawberry Cultivation in Controlled Horticultural Land (시설 딸기의 재배방법에 따른 토양 미생물군집 비교)

  • Min, Se-Gyu;Park, Su-Seon;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.479-484
    • /
    • 2011
  • Fatty acid methyl ester (FAME) profiles were used to describe differences in soil microbial communities influenced by conventional farming system (CFS), conventional farming system without pesticides (CFSWP), and organic farming system (OFS) for strawberry cultivation in controlled horticultural land. In comparison to the CFS soils, the average soil microbial biomasses of in the OFS soils were approximately 1.2 times for total FAMEs ($195nmol\;g^{-1}$), 1.4 times for total bacteria ($58nmol\;g^{-1}$), 1.5 times for Gram-negative bacteria ($27.3nmol\;g^{-1}$), 1.2 times for Gram-positive bacteria ($26.1nmol\;g^{-1}$), and 1.5 times for actinomycetes ($2.8nmol\;g^{-1}$). The microbial communities of total bacteria (p<0.05) and Gram-negative bacteria (p<0.05) in the OFS and CFSWP soils were significantly higher larger than those in the CFS soils. However, fungal structure was significantly greater in CFS than in OFS and CFSWP (p<0.05). In principal component analyses of soil microbial communities, our findings suggest that actinomycetes should be considered as potential factor responsible for the clear microbial community differentiation observed between OFS and CFS in controlled horticultural land.

Processing and Characteristics of Canned Kwamaegi Cololabis saira using Red Pepper Paste with Vinegar (초고추장첨가 과메기통조림의 제조 및 특성)

  • Kwon, Soon-Jae;Park, Tae-Ho;Lee, Jae-Dong;Yoon, Moon-Joo;Kong, Cheung-Sik;Je, Hae-Soo;Jung, Jae-Hun;Kim, Jeong-Gyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.537-544
    • /
    • 2014
  • Kwamaegi is a traditional Korean seafood made from the flesh of Pacific saury Cololabis saira. It is recognized as a valuable, healthy food containing the ${\omega}$-3 fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). This study was conducted in order to obtain basic data for application to the canning process of Kwamaegi using red pepper paste with vinegar. Commercial Kwamaegi was cut into $2{\times}3cm$ lengths and 90 g was put into cans (301-3). Then, 60 g of water was added and precooked for 10 minutes at $100^{\circ}C$. The water was drained after precooking. The precooked Kwamaegi was packed into cans, and 60 g of red pepper paste with vinegar was added. The cans were seamed using a vacuum seamer, then sterilized for differing times (8-12 minutes) in a steam system retort at $121^{\circ}C$. Parameters such as: pH, TVB-N, amino-N, total amino acid content, free amino acid content, color value (L, a, b), texture profile, TBA value, mineral content, sensory evaluation and viable bacterial count of the product produced under varying sterilization times (8-12 minutes) were measured. There were no remarkable differences between sterilization conditions and textural characteristics. The results showed that product sterilized for 8 minutes proved to be the most desirable.

Anticarcinogenic Responses of MCF-7 Breast Cancer Cells to Conjugated Linoleic Acid (CLA) (식이성 Conjugated Linoleic Acid (CLA)가 유선암 세포(MCF-7)에서의 항암효과에 미치는 영향)

  • 문희정;이순재;박수정;장유진;이명숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.418-427
    • /
    • 2003
  • Conjugated linoleic acid (CLA) is the mixture of positional and geometric isomers of linoleic acid (LA, C18:2 $\omega$6), which is found abundantly in dairy products and meats. This study was peformed to investigate the anticarcinogenic effect of CLA in MCF-7 breast cancer cells. MCF-7 cell were treated with LA and CLA at the various concentrations of 15, 30, 60, 120 UM each. After incubation for 48 and 72 hours, cell proliferation, fatty acids incorporation into cell, peroxidation and activities of antioxidant enzymes were measured. Postaglandin E$_2$ (PGE$_2$) and thromboxane $A_2$ (TXA$_2$) were measured for the eicosanoids metabolism. There was no cell growth differences in both of LA and CLA treated MCF-7 cells at 48 hr incubation. Compared to LA, cell growth was decreased by CLA treatment according to increasing concentration at longer incubation times, respectively (p<0.05). Both of LA and CLA was incorporated into the cellular lipids 22~54% higher than in control but LA incorporation was not so linear as CLA according to concentration. Arachidonic acid (C20:4, $\omega$6) was synthesized after treatment of LA but did not in CLA, respectively. The lipid peroxide concentration in LA 120 $\mu$M group increased as 1.7 times as that in CLA 120 $\mu$M treated. The activities of antioxidant enzymes such as glutathione peroxidase and glutathione reductase were increased by the supplementation with CLA 120 $\mu$M at 72 hr incubation (p<0.001) compared to LA, otherwise activity of superoxide dismutase was not different in both. PGE$_2$ and TXA$_2$ levels were lower in condition of CLA treatments according to lower levels of arachidonic acids than those in LA treated group, respectively. Overall, the dietary CLA might change the MCF-7 cell growth by the changes of cell composition, production of lipid peroxide, activities of antioxidant enzymes and eicosanoid synthesis compared to dietary LA.

Analysis of Soil Microbial Communities Formed by Different Upland Fields in Gyeongnam Province

  • Kim, Min Keun;Ok, Yong Sik;Heo, Jae-Young;Choi, Si-Lim;Lee, Sang-Dae;Shin, Hyun-Yul;Kim, Je-Hong;Kim, Hye Ran;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • The present study investigated variations in soil microbial communities by fatty acid methyl ester (FAME) and the chemical properties at 24 sites of upland soils in Gyeongnam Province. The electrical conductivity of the soil under potato cultivation was significantly higher than those of the red pepper and soybean soils (p < 0.05). The gram-negative bacteria community in potato soil was significantly lower than those in the garlic and soybean soils (p < 0.05). The communities of actinomycetes and arbuscular mycorrhizal fungi in the red pepper soil were significantly higher than those in the potato soil (p < 0.05). In addition, the cy17:0 to 16:$1{\omega}7c$ ratio was significantly lower in red pepper, soybean, and garlic soils compared with potato soil, indicating that microbial stress decreased. Consequently, differences in soil microbial community were highly associated with cultivated crop species, and this might be resulted from the difference in soil chemical properties.