Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.3.341

Biological Characteristics and Tissue Structure of a Crustose Coralline Lithophyllum Alga  

Kang, Ji-Young (Department of Biotechnology, Pukyong National University)
Benliro, Ianthe Marie P. (KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University)
Lee, Ik-Joon (Department of Biotechnology, Pukyong National University)
Choi, Ji-Young (Department of Biotechnology, Pukyong National University)
Joo, Jin (Department of Applied Chemistry, Kyungpook National University)
Choi, Yoo Seong (Department of Chemical Engineering, Chungnam National University)
Hwang, Dong Soo (Postech Ocean Science & Technology Institute, Pohang University of Science & Technology)
Hong, Yong-Ki (Department of Biotechnology, Pukyong National University)
Publication Information
Journal of Life Science / v.23, no.3, 2013 , pp. 341-346 More about this Journal
Abstract
The disappearance of seaweed flora in some rocky areas, which is known as algal whitening, barren ground, coralline flats, or deforested areas, is associated with some species of coralline algae. To determine the biological characteristics of a representative species of crustose coralline alga, the 18S rDNA gene was sequenced to identify the genus Lithophyllum. According to its morphological and distributional characteristics, it was deduced to be L. yessoense. Viability was measured using triphenyl tetrazolium chloride and showed high viability from December to February. Culture conditions of $16^{\circ}C$, a 16 hr light, 8 hr dark cycle, and 30 ${\mu}E/m^2/s$ light intensity were optimal for maintaining the viability of the alga for up to five days. Included in the fatty acids was 9.7% ${\omega}$-3 eicosapentaenoic acid. An electron microscopy scan of the surface structure revealed round craters about 3.6 ${\mu}m$ in diameter, which were covered with rough, irregular, and angular polygon-shaped structures about 1.0 to 3.7 ${\mu}m$ in size. Based on the composition and structure found in our study, biomimetic coralline alga might become an environmentally friendly antifouling material against the attachment of soft foulants.
Keywords
Crustose alga; fatty acid; Lithophyllum; tissue structure; viability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agateuma, Y., Mateuyama, K., Nakata, A., Kawai, T. and Nishikawa, N. 1997. Marine algal succession on coralline flats after removal of sea urchins in Suttsu bay on the Japan Sea coast of Hokkaido, Japan. Nippon Suisan Gakkaishi 63, 672-680.   DOI
2 AOAC. 2000. Official Methods of Analysis. Vol. II, 17th ed. Association of Official Analytical Chemists, Washington, D.C., USA.
3 Bird, C. J., Rice, E. L., Murphy, C. A. and Ragan, M. A. 1992. Phylogenetic relationships in the Gracilariales (Rhodophyta) as determined by 18S rDNA sequences. Phycologia 31, 510-522.   DOI
4 Bittner, L., Payri, C. E., Maneveldt, G. W., Couloux, A., Cruaud, C., de Riviers, B. and Le Gall, L. 2011. Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes. Mol Phylogenet Evol 61, 697-713.   DOI   ScienceOn
5 Guiry, M. D. and Guiry, G. M. 2013. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 22 January 2013.
6 Suzuki, Y., Takabayashi, T., Kawaguchi, T. and Matsunaga, K. 1998. Isolation of an allelophatic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta). J Exp Mar Biol Ecol 225, 69-77.   DOI   ScienceOn
7 Adey, W. H. 1998. Coral reefs: algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. J Phycol 34, 393-406.   DOI   ScienceOn
8 Tokuda, H., Kawashima, S., Ohno, M. and Ogawa, H. 1994. Seaweeds of Japan. Midori Shobo Co., Tokyo, Japan.
9 Whalan, S., Webster, N. S., Negri, A. P. 2012. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges. PLoS ONE 7, e30386.   DOI
10 Hong, Y. K., Kim, S. D., Polne-Fuller, M. and Gibor, A. 1995. DNA extraction conditions from Porphyra perforata using LiCl. J Appl Phycol 7, 101-107.   DOI   ScienceOn
11 Johnson, C. R. and Mann, K. H. 1986. The crustose coralline alga, Phymatolithon Foslie, inhibits the overgrowth of seaweeds without relying on herbivores. J Exp Mar Biol Ecol 96, 127-146.   DOI   ScienceOn
12 Kim, J. H. 2000. Taxonomy of the Corallinales, Rhodophyta, in Korea. Ph.D. dissertation, Seoul National University, Seoul, Korea.
13 Ohsawa, N., Ogata, Y., Okada, N. and Itoh, N. 2001. Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide. Phytochemistry 58, 683-692.   DOI   ScienceOn
14 Littler, M. M. 1972. The crustose Corallinaceae. Oceanogr Mar Biol Annu Rev 10, 311-347.
15 Luyen, Q. H., Cho, J. Y., Choi, J. S., Kang, J. Y., Park, N. G. and Hong, Y. K. 2009. Isolation of algal spore lytic C17 fatty acid from the crustose coralline seaweed Lithophyllum yessoense. J Appl Phycol 21, 423-427.   DOI
16 Masaki, T., Fujita, D. and Hagen, N. T. 1984. The surface ultrastructure and epithallium shedding of crustose coralline algae in an Isoyake area of southwestern Hokkaido, Japan. Hydrobiologia 116/117, 218-223.   DOI
17 Park, S. M., Kang, S. E., Choi, J. S., Cho, J. Y., Yoon, S. J., Ahn, D. H. and Hong, Y. K. 2006. Viability assay of coralline algae using triphenyltetrazolium chloride. Fish Sci 72, 912-914.   DOI   ScienceOn
18 Roberts, R. D., Kaspar, H. F. and Barker, R. J. 2004. Settlement of abalone larvae in response to five species of coralline algae. J Shellfish Res 23, 975-987.
19 Saito, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4, 406-425.
20 Steneck, R. S. 1986. The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annu Rev Ecol Syst 17, 273-303.   DOI
21 Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: integrated software for molecular evolutionary genetic analysis and sequence alignment. Brief Bioinform 5, 150-163.   DOI   ScienceOn
22 Kim, M. J., Choi, J. S., Kang, S. E., Cho, J. Y., Jin, H. J., Chun, B. S. and Hong, Y. K. 2004. Multiple allelopathic activity of the crustose coralline alga Lithophyllum yessoense against settlement and germination of seaweed spores. J Appl Phycol 16, 175-179.   DOI   ScienceOn
23 Kitamura, H., Kitahara, S. and Koh, H. B. 1993. The induction of larval settlement and metamorphosis of two sea urchins, Pseudocentrotus depressus and Anthocidaris crassispina, by free fatty acids extracted from the coralline red algae Corallina pilulifera. Mar Biol 115, 387-392.   DOI