The Effect of Weight Ratio of Carbon Source to Nitrogen Source on toe Growth and the Composition of Fatty Acid of Thraustochytrium aureum ATCC 34304

탄소원과 질소원의 무게비가 Thraustochytrium aureum ATCC 34304의 성장 및 지방산 조성 특성에 미치는 영향

  • Kim Won-Ho (Department of Biological and Chemical Engineering, College of Engineering, Inha University) ;
  • Park Seung-Hye (Department of Biological and Chemical Engineering, College of Engineering, Inha University) ;
  • Song Sang-Kyu (Department of Biological and Chemical Engineering, College of Engineering, Inha University) ;
  • Bae Kyung-Dong (Vaccine Research Institute, GreenCross Vaccine Corp.) ;
  • Hur Byung-Ki (Department of Biological and Chemical Engineering, College of Engineering, Inha University)
  • 김원호 (인하대학교 공과대학 생명화학공학부) ;
  • 박승혜 (인하대학교 공과대학 생명화학공학부) ;
  • 송상규 (인하대학교 공과대학 생명화학공학부) ;
  • 배천순 (녹십자백신 백신연구소) ;
  • 허병기 (인하대학교 공과대학 생명화학공학부)
  • Published : 2005.08.01

Abstract

The effect of the weight ratio of carbon source to nitrogen source on the growth and the composition change of fatty acids of Thraustochytrium aureum ATCC 34304 was investigated. The cell concentration of 5 days' culture increased and then decreased according to the increase of C/N, The ratioes for the maximum biomass were unique respectively and distributed between 1 and 4 with the initial sugar concentration in the range of 5 g/L to 25 g/L. The biomass yield, $Y_{x/s}$ decreased along with the increase of C/N, but maintained a constant value 0.35 between 10 and 20. The composition of myristic acid $(C_{14:0})$, one component of the lipid synthesized by T. aureum, was not affected with the change of C/N, but the composition of palmitic acid $(C_{16:0})$ was around $20\%$ below 4 of C/N and decreased to $15\%$ according to C/N about 4. The compositions of oleic acid $(C_{18:1})$ and linoleic acid $(C_{18:2})$ increased from 0 to $20\%\;and\;7\%$ respectively. The composition of $\gamma-linoleic$ acid $(C_{18:3})$, however, reduced from $5\%\;to\;2\%$. EPA $(C_{20:5})$ and DPA $(C_{22:5})$ showed a tendency of reduction in the weight composition according to the increase of C/N, but DHA $(C_{22:6})$ had a trend maintaining an approximately constant value, around $40\%$, irrespective of the change of C/N.

탄소원과 질소원의 무게비가 Thraustochytrium aureum ATCC 34304의 성장 및 지방산 조성에 미치는 영향을 규명하였다. 초기 당농도에 관계없이 배양 5일 후의 균체농도는 C/N 값이 증가하면 증가하였다가 감소하였다. 각 초기 당 농도에 따라서, 균체농도가 최대가 되는 C/N의 비는 각기 고유한 값을 나타내었다. 초기 당농도 5 g/L 내지 25 g/L 범위내에서 균체농도가 최대가 되는 C/N 값은 1 내지 4 사이에 분포하였다. C/N 비에 따른 균체수율 $Y_{x/s}$의 값은 C/N의 값이 증가하면 감소하였으나 10 내지 20 사이의 범위에서는 0.35 의 일정한 값을 유지하였다. T. aureum ATCC 34304가 생합성하는 포화지방산인 미리스트산의 조성은 C/N 비의 변화에 영향을 받지 않았으나 팔미트산의 조성은 C/N 값 4 이하에서는 $20\%$ 내외의 값을 나타내었고 C/N 값이 증가하면 $15\%$까지 감소하였다. 탄소수사 18개인 $C_{18:}$의 지방산 중 올레인산 $(C_{18:1})$과 리놀레인산 $(C_{18:2})$의 조성은 C/N 값이 증가하면 $0\%$에서 각각 $20\%$$7\%$까지 지속적으로 증가하였다. 반면 $\gamma$-리놀레인산 $(C_{18:3})$의 조성은 C/N 값의 증가에 따라 $5\%$에서 $2\%$까지 감소하였다. 탄소수가 20개 이상인 $\omega-3$ 다중불포화 지방산 중 EPA $(C_{20:5})$와 DPA $(C_{22:5})$의 조성은 C/N 값의 증가에 따라 감소하는 경향을 나타내었으며, DHA $(C_{22:6})$ 조성은 C/N 값이 증가하더라도 $40\%$ 내외의 간을 유지하였다.

Keywords

References

  1. Dratz, E. A. and Deese, A. J. (1986), Health effects of polyunsaturated fatty acid in seafoods. Academic Press Inc., USA 319-330
  2. Gascon, A., Jacques H., Moorjani, S., Deshaies, Y., Brun, L. D., and Julien, P. (1996), Plasma lipoprotein profile and lipolytic activities in response to the substitution of lean white fish for other animal protein sources in premenopausal women, Am. J. Clin. Nutr. 63: 315-321 https://doi.org/10.1093/ajcn/63.3.315
  3. Mehta J., Lopez L. M., and T. Wargovish (1987), Eicosapentaenoic acid: its relevance in atherosclerosis and coronary artery disease, Am. J. Cardiol. 59: 155-159 https://doi.org/10.1016/S0002-9149(87)80090-5
  4. Urakaze M., Hamazaki T., Soda V., Miyamoto M., Iloki F., Yano F., and Kumagai A. (1986), Infusion of emulsified trieicosapentaenoyl-glycerol into rabbits -the effects on platelet aggregation, polymorphonuclear leukocyte adhesion, and fatty acid composition in plasma and platelet phospholipids, Thrombo. Res. 44: 673-682 https://doi.org/10.1016/0049-3848(86)90168-4
  5. Mortensen, J. Z., Schmidt E. B., Nielsen A. H., and J. Dyerberg (1983), The effect of N-6 and N-3 polyunsaturated fatty acids on hemostasis, blood lipids and blood pressure, Thromb. Haemost. 50: 543-546
  6. Krema, J. M., Biguouette, J., and A. U. Michalek (1985), Effects of manipulating dietary fatty acids on clinical manifestations of rheumatoid arthritis, Lancet 1: 184-187
  7. Ziboh V. A., Cohen K. A., Ellis C. N., Miller C., Hamilton T. A., Kragballe K., Hydrick C. R., and J. J. Voorhees (1986), Effects of dietary supplementation of fish oil on neutrophil and epidermal fatty acids, Arch Dermatol. 122: 1277-1282 https://doi.org/10.1001/archderm.122.11.1277
  8. Robinson D. R., Prickett J. D., Makoul G. T., Steinberg A. D., and Colvin R. B. (1986), Dietary fish oil reduces progression of established renal disease in (NZB $\times$ NZW) F1 mice and delays renal disease in BXDB and MRL/1 strains, Arthritis Rheum 29: 539 - 546 https://doi.org/10.1002/art.1780290412
  9. Caison, S. E. (1996), Arachidonic acid status of human infants: Influence of gestational age at birth and diets with very long chain n-3 and n-6 fatty acids, J. Nutr. 126: 1092-1098
  10. Yongmanitchai W. and Ward O. P. (1989), Omega-3 fatty acids: alternative sources of production, Process Biochem. 24: 117-25
  11. Braden L. M. and Carroll K. K. (1986), Dietary polyunsaturated fat in relation to mammary carcinogenesis in rats, Lipids 21: 285-288 https://doi.org/10.1007/BF02536414
  12. Yokoclri, T., Honda, D., Higashibara, T., and T. Nakahara (1998), Optimization of docosahexaenoic acid production by Schizochytrium limacinum SRZl, Appl. Microbiol. Biotechnol. 49: 72-76 https://doi.org/10.1007/s002530051139
  13. Bajpai P. K., Bajpai P., and Ward O. P. (1991), Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304, J. Amer. Oil Chem. Soc. 68: 509-514 https://doi.org/10.1007/BF02663823
  14. Cohen, Z., Vonshak, A. and A. Richmond (1987), Fatty acid composition of spirulina strains grown under various conditions, Phytochemistry 26: 2255-2258 https://doi.org/10.1016/S0031-9422(00)84694-4
  15. Singh, A. and O. P. Ward (1996), Production of high yields of docosahexaenoic acid by Thraustochytrium roseum ATCC 28210, J. lnd. Microbiol. 16: 370 - 373 https://doi.org/10.1007/BF01570118
  16. Stinson, E. E, Kwoczak R, and M. Kurantz (1991), Effect of cultural conditions on production of eicosapentaenoic acid by Pythium irregulare, J. lnd. Microbiol. 8(3): 171-178 https://doi.org/10.1007/BF01575850
  17. Jiang, Y. and F. Chen (2000), Effect of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii, Process Biochem. 35: 1205-1209 https://doi.org/10.1016/S0032-9592(00)00163-1
  18. Rezanka, T., Doucha, J., Mares, P., and M. Podojil (1987), Effect of cultivation temperature and light intensity on fatty acid production in the red alga Porphyridium cruentum, J. Basic Microbiol. 27: 167-171 https://doi.org/10.1002/jobm.3620270312
  19. Peberdy, J. and D. K. Toomer (1975), Effect of nutrient starvation on the utilization of storage lipids in Mortierella ramanniana, Micobios. 13: 123-131
  20. Bajpai P. and P. K. Bajpai (1993), Eicosapentaenoic acid (EPA) production from microorganisms: a review, J. Biotechnol. 30, 161-183 https://doi.org/10.1016/0168-1656(93)90111-Y
  21. Henderson R. J., Leftley J. W., and J. R. Sargent (1988), Lipid composition and biosynthesis in the marine dinoflagellate Crypthecodinium cohnii, Phytochemistry 27, 1679-1683 https://doi.org/10.1016/0031-9422(88)80425-4