#### **Research** Article

# Analysis of the Oxidative Stress-Related Transcriptome from *Capsicum annuum* L.

Hyoungseok Lee · Sang Ho Lee · Ho Bang Kim · Nam Houn Lee · Chung Sun An

Received: 12 October 2010 / Accepted: 26 October 2010 © Korean Society for Plant Biotechnology

Abstract For the massive screening of the genes related to oxidative stress, a cDNA library was constructed from hot pepper (Capsicum annuum L. cv. Nockkwang) leaves treated with methyl viologen. From this library, 1,589 cDNA clones were sequenced from their 5' ends. The sequences were clustered into 1,252 unigenes comprised of 152 contigs and 1,100 singletons. Similarity search against NCBI protein database identified 1,005 ESTs (80.3%) as Known, 197 ESTs (15.7%) as Unknown, and 50 ESTs (3.99%) as No hit. In the ESTs, oxidative stress-related genes such as ascorbate peroxidase, catalase, and osmotin precursor were highly expressed. The cDNA microarray containing 1,252 unigenes was constructed and used to analyze their expression upon methyl viologen treatment. Analyses of the hybridization revealed that various stress-related genes such as peroxidase, tyrosine aminotransferase, and omega-6 fatty acid desaturase, were induced and some metabolism related genes such as aldolase and ketol-acid reductoisomerase, were repressed by methyl viologen treatment, respectively. The information from this study will be used for further study on the functional roles of oxidative stress-related genes and signaling network of oxidative stress in hot pepper.

H. Lee Division of Life Sciences, Korea Polar Research Institute, KORDI, Incheon 406-840, Korea

S. H. Lee

Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108, U.S.A

H. B. Kim

The Natural Science Research Institute, Myongji University, Yongin 449-728, Korea

Keywords *Capsicum annuum*, EST, hot pepper, methyl viologen, microarray, oxidative stress

## Introduction

In plants, exposure to various abiotic and biotic stresses is known to induce reactive oxygen species (ROS) accumulation such as hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), superoxide (O<sub>2</sub><sup>-</sup>), hydroxyl radicals, and singlet oxygen (<sup>1</sup>O<sub>2</sub>) (Desikan et al. 1998; Niyogi 1999). Among them, due to its relatively long half-life and high permeability across membrane, H<sub>2</sub>O<sub>2</sub> especially plays an important role under these conditions (Yang and Poovaiah 2002). It participates in many protective reactions such as reinforcing cell wall and phytoalexin production (Quan et al. 2008).

However, excess  $H_2O_2$  and corresponding oxidative stress can be detrimental to cells. Various internal or external factors, such as drought stress, ABA,  $H_2O_2$  itself synthesized in response to loss of turgor, low and high temperatures, excess excitation energy, UV irradiation, and ozone (Karpinski et al. 1999; Langebartels et al. 2000; Pei et al. 2000; Wahid et al. 2007; Gao and Zhang 2008) can induce accumulation of  $H_2O_2$ . Those stimuli thus can lead to inactivation of photosynthetic activities and the oxidation of lipids, proteins and enzymes necessary for the proper chloroplast functions and eventually the proper cell functions as a whole (Foyer et al. 1994).

There are a number of genes expressed to protect plants from toxic  $H_2O_2$  effects. A portion of genes are expressed for the biogenesis of peroxisome, an organelle of direct importance for antioxidant defense, and some other genes encodes defense-related enzymes such as glutathione *S*-transferase (GST), Phe ammonia lyase (PAL), superoxide dismutase (SOD), and ascorbate peroxidase (APX) that can dismutate  $O_2^-$  radicals and scavenge  $H_2O_2$  (Niyogi

H. Lee  $\cdot$  S. H. Lee  $\cdot$  H. B. Kim  $\cdot$  N. H. Lee  $\cdot$  C. S. An ( $\boxtimes$ ) School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea e-mail: ancs@snu.ac.kr

1999; Desikan et al. 1998; Grant et al. 2000; Ort and Baker 2002; Jagadeeswaran et al. 2009).

These enzymes are also required to generate  $H_2O_2$  as a signal molecule to regulate specific biological processes such as photosynthesis, photorespiration, senescence and tolerance to abiotic and biotic stresses (Apel and Hirt 2004). It has become increasingly clear that the specificity of the biological response to the altered ROS levels depends on multiple factors including interaction with other signaling molecules such as nitric oxide, lipid messengers and plant hormones (Gechev et al. 2006). How specificity in plant cells is transduced is still unclear, but activation of different MAP kinases depending on type of stimulus could be a key factor as studied in *Schizosaccharomyces pombe* (Quinn et al. 2002).

*Capsicum annuum* is known as the most widely consumed pepper species throughout the world due to the nutritional values and spicy taste (Knapp 2002). It is a good source of vitamins (11 mg/g in the dried fruit) and it also has medicinal properties such as alleviating pain, arthritis and long-term inflammation (Bosland and Votava 1999). Considering the vegetative growth of hot pepper species is severely affected by oxidative damage caused by environmental stresses in natural conditions (Supanjani 2006), elucidation of molecular mechanism of defense against oxidative stress in hot pepper is very important.

At present, three pepper EST databases have been constructed: DFCI pepper gene index (http://compbio. dfci.harvard.edu/tgi/cgi-in/tgi/gimain.pl?gudb=pepper), Pepper unigene at the sol genomics network (http://www.sgn. cornell.edu) and Pepper EST database (http://genepool.kribb. re.kr/pepper/). Though there has been a growing international need for more specific ESTs for various stresses and gene expression analysis in hot pepper, we could find only one such report with hot pepper exposed to ozone to induce various ROS generation (Lee and Yun 2006).

Accordingly, we have used EST and cDNA microarray technologies to identify genes specifically involved in oxidative stress response by methyl viologen (MV, 1, 1'-Dimethyl-4, 4'-bipyridinium dichloride paraquat) treatment. This herbicide acts as an artificial electron acceptor both from chloroplast photosystem I (Dodge 1971) and mitochondrial electron transport chain (Palmeira et al. 1995), thereby exacerbating the production of superoxide radicals.

#### Materials and methods

## Plant materials, growth condition, and MV treatments

Hot pepper plants (*Capsicum annuum* L. cv. Nokkwang) were grown in a controlled environment chamber with 16 h/8 h and 27°C/22°C of light/dark cycle under 60% relative humidity and the irradiance of 100  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> with fluorescent lamps. The 6 week-old plants were used for stress treatment. The primary leaves of 6 weeks-old plants were sprayed with 100  $\mu$ M methyl viologen (Sigma, Saint Louis, Mo, USA) and harvested on 1, 2, 4, 6, 8, 12 and 24 h after the treatment, respectively.

## H<sub>2</sub>O<sub>2</sub> assay

H<sub>2</sub>O<sub>2</sub> concentration was measured by the FOX1 method, based on the peroxide-mediated oxidation of Fe<sup>2+</sup>, followed by the reaction of Fe<sup>3+</sup> with xylenol orange [*o*-cresolsulfonephthalein 3', 3"-bis(methylimino) diacetic acid, sodium salt; Farmitalia Carlo Erba, Milan] (Wolff 1994). Standard curves for H<sub>2</sub>O<sub>2</sub> were obtained for each independent experiment by adding variable amounts of H<sub>2</sub>O<sub>2</sub> to 500 µL of basal medium mixed with 500 µL of assay reagent. Data were normalized and expressed as µM H<sub>2</sub>O<sub>2</sub> per gram of fresh weight of explants from three independent experiments with standard deviation.

## RNA isolation and cDNA libraries construction

As H<sub>2</sub>O<sub>2</sub> generation was highly induced at 8 h and 12 h after MV treatment, total RNA was isolated from leaves of 6 weeks-old plants treated with methyl viologen for 8 h and 12 h using TRIZOL Reagent (Sigma). The isolated total RNAs were equally mixed for further steps. RNasefree DNase (Promega, Madison, WI, USA) was used to remove genomic DNA contamination in the RNA samples during RNA purification. cDNA was prepared using a ZAP-cDNA synthesis kit, directionally ligated to ZAP II vector, and packaged using Gigapack III Gold packaging extracts (Stratagene, Cedar Creek, TX, USA). Plasmids containing cDNA inserts were excised using Ex-Assist helper phage and propagated in SOLR cells according to the manufacturer's instructions. Single-pass sequencing and sequence processing

ESTs were generated by 5' end sequencing and resulted sequences were edited automatically to remove the vector and bacterial sequences, and ambiguous regions. Individual ESTs were assembled into groups of contigs representing unique transcripts using the CAP3 program. Consensus sequences of all contigs were generated based on 75% homology over a minimum of 30 bp. The individual ESTs were searched against the GenBank nr database using a BLASTX algorithm. On the basis of BLASTX results, we classified ESTs into three categories: known, unknown, and no hit described as previously (Lee et al. 2008). Hot pepper EST sequences are available at dbEST (http://www.ncbi.nlm.nih.gov/projects/dbEST/) with EST ID from GO3 44440 to GO345958.

# Preparation of cDNA microarray

For the preparation of cDNA microarray, we used 1,252 cDNA clones and control DNAs. Each plasmid DNA was isolated and its insert was PCR-amplified using a pair of T3 and T7 promoter primers. The PCR cycles included 94 $^{\circ}$ C for 5 min of initial denaturation, followed by 94℃ for 30 sec, 56℃ for 30 sec, and 72℃ for 2 min (for a total of 35 cycles), followed by a 10 min of final extension at  $72^{\circ}$ C. The PCR products were examined by 1% agarose gel electrophoresis, purified using Sephadex G-50 columns, dried and resuspended in 50% DMSO solution. Prepared DNAs were spotted using a PixSys 5500A (Digilab, Hollison, MA, USA) onto amine coated micro glass slides (Telechem International, Sunnyvale, CA, USA). Each slide was cross-linked with 300 mJ of short wave ultraviolet irradiation (Stratalinker, Stratagene) and stored in a desiccator until use.

### Probe preparation and the microarray analysis

cDNA probes were prepared from total RNA extracted using RNeasy mini kit (Qiagen, Germantown, MD, USA), from biological triplicate sets of six-week-old plants of 1, 6 and 12 h after the methyl viologen treatment, respectively. They were labeled with Cy5, and cDNA from non-treated plants was labeled with Cy3 and used as a control in all hybridization using 3DNA<sup>TM</sup> Array 50 kit (Genisphere LLC, Hatfield, PA, USA) and SuperScript II reverse transcriptase (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions. Microarray hybridization and analysis were performed as described previously (Lee et al. 2004).

#### RNA gel blot analysis

Gel blotting and filter hybridization were performed as described previously (Kwon and An 2003). Total RNA (20  $\mu$ g) was separated on 1.2% (w/v) agarose-formaldehyde gels and transferred to Hybond-N nylon membrane. After digestion with *Eco*R I / *Xho* I, fragments of cDNA clones were labeled with [ $\alpha$ -<sup>32</sup>P] dCTP to prepare probes for hybridization. Hybridization was performed in modified Church buffer [1 mM EDTA, 0.25 M Na<sub>2</sub>HPO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub> (pH 7.4), 1% (w/v) casein, 7% (w/v) SDS] at 62°C for 16 h. After hybridization, membranes were washed once with 2×SSC and 0.1% (w/v) SDS for 20 min. at room temperature, then twice with 1×SSC and 0.1% SDS at 62°C for 20 min. The membrane was air-dried and exposed to the X-ray film for 3-4 days.

# Results

Generation of H<sub>2</sub>O<sub>2</sub> in leaves of hot pepper treated with MV

In this study, we used MV as an inducer of oxidative stress response to investigate transcriptome of hot pepper under oxidative stress. As the first step, the appropriate amount and time of MV treatment for the induction of oxidative stress were determined. Plants were sprayed with 0, 50, 100, 200 and 500 µM MV and exposed for 12 h under light condition (100  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>) (Fig. 1A). Because plants showed necrosis all over the leaves and withered after 200 and 500 µM MV treatment, 100 µM concentration of MV was selected as the most effective concentration for further experiments. In case of time course analysis, the H<sub>2</sub>O<sub>2</sub> concentration was increased up to 8 and 12 h after MV treatment, then declined (Fig. 1B). Thus, we harvested samples at these time points, and mRNAs from these samples were used to construct a cDNA library.



Fig. 1 Measurement of hydrogen peroxide in MV-treated plants. (A) Plants were sprayed with 0, 50, 100, 200 and 500  $\mu$ M MV. (B) Plants were sprayed with 100  $\mu$ M MV during the indicated time points. White bars represent control leaves, while black bars show leaves treated with MV. All samples were exposed to light (100  $\mu$ M m<sup>-2</sup> s<sup>-1</sup>) for 12 h after treatments. H<sub>2</sub>O<sub>2</sub> concentration was measured by the FOX1 method. Each data point is the mean (± SD) of three independent experiments

#### Qualitative and cluster analyses of EST sequences

To examine genes expressed after MV treatment, a cDNA library was constructed using mixed mRNA from hot pepper leaves of 8 h and 12 h after MV treatment. A total of 1,589 cDNA clones were randomly selected and sequenced from their 5' ends. Clustering analysis revealed 1,252 unigenes comprised of 152 contigs and 1,100 singletons. The average length of unigenes was approximately 662 bp. After querying the NCBI database using the BLASTX program, sequence data was classified into Known, Unknown and No hit using E-value as cut-off value. Through the overall analysis of the ESTs, 1,005 clones (80.3%) were identified as Known sequences, 197 clones (15.7%) as Unknown, and 50 clones (4.0%) as No hit. The GC contents were 42.6% for Known sequences, 38.2% for Unknown, and 35.1% for No hit ESTs. Highly expressed unigenes from this library were annotated in Table 1. The most abundantly expressed gene is ribulose bisphosphate carboxylase (RuBisCo), which is the representative abundant mRNA in photosynthetic plant leaves. RuBisCo was then followed by catalase transcripts encoding a typical enzyme detoxifying harmful effect of ROS. Also, metallothionein gene was highly expressed, which is known to be involved in homeostasis and detoxification of metals and in response to oxidative stress (Nishiuchi et al. 2007).

 
 Table 1 EST cluster collection statistics and distribution according to the BLASTX search results

|                              | No. EST        | GC contents |
|------------------------------|----------------|-------------|
| No. of cDNA sequenced        | 1,589          |             |
| Cluster summary              |                |             |
| No. of singletons            | 1,100          |             |
| No. of contigs               | 152            |             |
| No. of unigenes              | 1,252          |             |
| Annotation of unigenes       |                |             |
| Known                        | 1,005 (80.27%) | 42.6%       |
| Protein of known function    | 674            |             |
| Protein of putative function | 193            |             |
| Unknnown function            | 138            |             |
| Unknown                      | 197 (15.74%)   | 38.2%       |
| No Hit                       | 50 (3.99%)     | 35.1%       |

Differential gene expression under MV treatment

To study the global changes in transcriptome of hot pepper in response to MV, we constructed cDNA microarray composed of PCR products from 1,252 cDNA clones and used pBlueScript II SK+ vector and luciferase from firefly (*Photinus pyralis*) as a negative controls, and tubulin and ribulose bisphosphate carboxylase from *C. annuum* as positive controls. As a result of the cDNA microarray analysis, 145 genes showed significant changes in expression by MV treatment. Their expression patterns were grouped into ten clusters using the hierarchical clustering method. Among them, 50 genes in clusters 1 and 4 were down-regulated

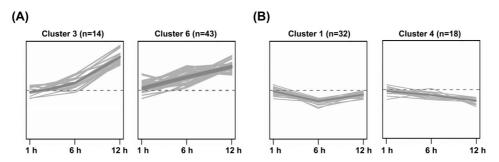



Fig. 2 k-means clustering of the gene expression data. Cluster analysis of (A) 50 ESTs down-regulated and (B) 57 ESTs up-regulated after MV treatment in hot pepper. Classification of the clones was based on the similarity of their expression profiles using the k-means clustering technique. Thick lines show tendencies in each cluster according to time course

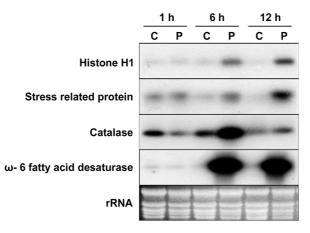



Fig. 3 RNA gel-blot analyses to confirm DNA microarray data. Lanes contained 20  $\mu$ g of total RNA extracted from control (C) and MV treated sample (P) at given time points. Blots were sequentially hybridized to the designated probes. All hybridizations for each probe were performed under the same condition

and 63 genes in clusters 3 and 6 were up-regulated by MV treatment (Fig. 2). A total of 83 genes comprised of down-regulated 38 genes and up-regulated 45 genes were grouped based on MIPS functional categories and their expression ratios are shown in Table 2. We could find that various stress-related genes such as peroxidase, tyrosine aminotransferase, omega-6 fatty acid desaturase (*a*-6 FAD), and glutathione-*S*-transferase were induced, while some metabolism related genes such as aldolase and ketol-acid reductoisomerase were repressed by MV.

#### Expression of selected genes assessed by northern hybridization

To confirm the microarray data, we performed northern hybridization analyses with some gene-specific probes. We analyzed two genes in cluster 3 and two in cluster 6 (Fig. 3). The results of these data agreed in most cases with the profiles derived from the microarray data.

## Discussion

The oxidative stress-related studies using ESTs and microarray have been concentrated on *Arabidopsis* (Desikan et al. 2001; Mahalingam and Fedoroff 2001). Though hot pepper is one of the major crops in many western countries as well as in Korea, the massive analysis on oxidative stress-related genes using EST and microarray from hot pepper has not been performed yet. The high-throughput gene identification and global gene expression analysis are the first step for functional analysis of plant genes involved in many biological processes. Accordingly, in this study, we have analyzed transcriptional changes of the hot pepper to oxidative stress using ESTs and DNA microarray technologies.

In response to oxidative stress, 1 to 2% of genes in *Arabidopsis* genome showed differential expression pattern in the previous microarray data (Desikan et al. 2001). Gadjev et al. (2006) reported that around 600 genes have shown differential expression on 12 h after MV, which

| Representative EST | No. of ESTs | E-Value | Score | Description                                                                                            |
|--------------------|-------------|---------|-------|--------------------------------------------------------------------------------------------------------|
| CS01016D12         | 19          | 3E-92   | 337   | Ribulose bisphosphate carboxylase small chain, chloroplast precursor (O65349, <i>Capsicum annuum</i> ) |
| CS01008H09         | 14          | 0       | 918   | Catalase (BAF91369, C. annuum)                                                                         |
| CS01019D02         | 9           | 1E-117  | 581   | Alpha-tubulin (CAD13177, Nicotiana tabacum)                                                            |
| CS01015E01         | 8           | 1E-138  | 492   | Elongation factor 1-alpha-like protein (ABC01896, Solanum tuberosum)                                   |
| CS01004G03         | 7           | 6E-28   | 126   | Cell wall protein (AAR83883, C. annuum)                                                                |
| CS01020C11         | 7           | 5E-26   | 106   | Metallothionein-like protein type 2 (AAX20047, C. annuum)                                              |
| CS01011A07         | 6           | 1E-122  | 439   | Polyubiquitin (ABY60454, Adonis aestivalis var. palaestina)                                            |
| CS01014A02         | 6           | 5E-8    | 56    | Hypothetical protein (XP_001379926, Monodelphis domestica)                                             |
| CS01019C10         | 5           | 1E-157  | 552   | Osmotin-like protein (AAP86781, C. annuum)                                                             |
| CS01016E09         | 5           | 2E-99   | 369   | ADP ribosylation factor (ABB03801, Daucus carota)                                                      |
| CS01016F02         | 5           | 1E-18   | 102   | Senescence up-regulate protein (CAA99759, Lycopersicon esculentum)                                     |
| CS01011G12         | 5           | 1E-124  | 612   | Fructokinase (Q7XJ81, L. esculentum)                                                                   |

Table 2 The 12 most abundant contigs from the ESTs

is about 2.5% of 24,000 genes of Arabidopsis whole genome. In this study, microarray experiment using hot pepper ESTs revealed that approximately 9% of ESTs was differentially expressed in response to MV treatment (113 from 1,252 ESTs).

Considering that the genome size of hot pepper is about 26 times bigger than that of Arabidopsis (Moscone et al. 2003), the strategy using stress-specific EST and subsequent microarray analysis is very effective to find genes related to specific environmental stress. In EST analysis, 1,252 ESTs from MV-treated cDNA library represented not only oxidative stress-related genes such as the catalase and peroxidase but also a number of house-keeping genes such as the RuBisCo, elongation factor 1- $\alpha$ , and  $\alpha$ -actin (Table 1).

The most well-defined molecular feature of plants under oxidative stress condition is enhanced transcription of ROS scavenging enzymes (Quan et al. 2008). Our data revealed several genes (CS01019G10, CS01020C08, and CS01017B08) showing significant sequence similarity to genes encoding enzymes such as catalase, peroxidase, and GST, respectively, were up-regulated by ROS generation (Table 2). In particular, CS01019G10 showed the highest similarity (89%) with Arabidopsis Cat2 which is known as the most important player for the protection of chloroplasts against oxidative damage (Mittler et al. 2004). These data indicate that our experiments were performed under appropriate condition to generate ROS *in planta*.

Microarray data showed that 63 genes were induced

and 50 genes repressed by MV treatment (Fig. 2). They were clustered based on MIPS category, indicating that MV treatment affects on various biological processes (Table 2). Especially, several genes known to be induced by pathogen attack were highly induced by MV treatment on hot pepper leaves (Table 2, Fig. 3) ; WRKY family transcription factor, SAR (systemic acquired resistance) 8.2 precursor, pathogenesis-related protein, wound induced protein and  $\omega$ -6 FAD.

WRKY family transcription factor is known to be a large group of plant-specific transcriptional regulators implicated in pathogen and stress responses, and senescence (Eulgem et al. 2000; Guo and Gan 2005). In Arabidopsis, two WRKY family genes (At4g01250 and At3g56400) were induced at 24 h after treatment of 10 µM MV (Gadjev et al. 2006). Our microarray data showed that WRKY transcription factor (CS01007H12) was expressed at 1 h and 12 h after MV treatment. Among 72 WRKY transcription factors in Arabidopsis genome, AtWRKY33 shares highest similarity with CS01007H12 (64%). AtWRKY33 is known to be induced 21 times by MV, and 24 times by ozone (Gadjev et al. 2006). It suggests possible roles of AtWRKY33 and CS01007H12 as a transcription factor to turn on a series of downstream genes, which are involved in scavenging oxygen radicals and protecting cellular components against toxic effects of oxidative stress.

Several ESTs encoding PR (pathogen-related) proteins such as wound induced protein and SAR 8.2 precursor were induced by MV treatment (Table 2). Previous studies

| EST ID       | Cluster  | r Strongest BLASTX Hit —                                                                           | Time after MV treatment |         |         |
|--------------|----------|----------------------------------------------------------------------------------------------------|-------------------------|---------|---------|
| EST ID       | Cluster  | Subligest BLASTA Hit                                                                               | 1 h                     | 6 h     | 12 h    |
| BIOGENESIS ( | OF CELI  | ULAR COMPONENTS                                                                                    |                         |         |         |
| CS01007G01   | 1        | Single-stranded DNA binding protein precursor (AAL39067, Solanum tuberosum)                        | -0.2129                 | -1.1609 | -0.6278 |
| CS01010G04   | 1        | Actin variant 1 (ABX82966, Dictyocaulus viviparus)                                                 | 0.4293                  | -1.2647 | -0.6188 |
| CS01007A06   | 4        | Chloroplast pigment-binding protein CP29 (ABG73415, Nicotiana tabacum)                             | -0.1755                 | -1.3670 | -1.6601 |
| CS01017D02   | 6        | Caffeoyl-CoA O-methyltransferase (Q8H9B6, S. tuberosum)                                            | 0.2252                  | 1.7317  | 1.4683  |
| CELLULAR CO  | OMMUN    | ICATION/SIGNAL TRANSDUCTION MECHANISM                                                              |                         |         |         |
| CS01014H07   | 1        | PP1A protein (CAA07470, Catharanthus roseus)                                                       | -0.3533                 | -1.7048 | -0.3910 |
| CS01015A10   | 1        | SNF1-related protein kinase (AAP51269, L. esculentum)                                              | -1.1230                 | -1.5836 | -0.1264 |
| CELL RESCUE  | E, DEFEN | NSE AND VIRULENCE                                                                                  |                         |         |         |
| CS01016G01   | 3        | Tyrosine aminotransferase (CAD30341, Solenostemon scutellarioides)                                 | -0.2817                 | 0.6472  | 2.8791  |
| CS01019G10   | 3        | Catalase (BAF91369, C. annuum)                                                                     | 0.8323                  | 1.0359  | 1.9720  |
| CS01012H06   | 4        | BURP domain-containing protein (BAB60850, <i>Bruguiera</i> gymnorrhiza)                            | 0.0404                  | -1.0668 | -1.0764 |
| CS01007F06   | 4        | Heat shock protein (AAQ08597, Hevea brasiliensis)                                                  | -0.4955                 | -0.4846 | -2.0903 |
| CS01019C10   | 6        | Osmotin-like protein (AAP86781, C. annuum)                                                         | 0.0456                  | 0.3903  | 1.2986  |
| CS01020A09   | 6        | Peroxidase (AAA65637, S. lycopersicum)                                                             | 0.1869                  | 1.0871  | 0.889   |
| CS01020C08   | 6        | Peroxidase precursor (AAS97959, Euphorbia characias)                                               | -0.1208                 | 1.2774  | 1.462   |
| CS01007B10   | 6        | Stress-related protein (AF178990, Vitis riparia)                                                   | 0.9501                  | 1.3042  | 1.264   |
| CS01018F09   | 6        | Wound-induced protein 1 (P20144, S. tuberosum)                                                     | 0.5381                  | 1.0757  | 0.9761  |
| CELLULAR TH  | RANSPO   | RT, TRANSPORT FACILITATION AND TRANSPORT ROUTES                                                    |                         |         |         |
| CS01017C09   | 1        | Auxin import carrier1 (NP_001105117, Zea mays)                                                     | -0.1206                 | -1.1305 | -0.5920 |
| CS01008G09   | 1        | H+-transporting two-sector ATPase, C subunit (ABN08957, M. truncatula)                             | -0.0426                 | -1.4079 | -0.1992 |
| CS01020G12   | 1        | Probable transport protein Sec61 alpha subunit (EDP31978,<br>Brugia malayi)                        | 0.0658                  | -1.4835 | -0.119  |
| CS01007H11   | 6        | STT3A, oligosaccharyl transferase (NP_568380, A. thaliana)                                         | 0.2268                  | 0.7401  | 1.2930  |
| ENERGY       |          |                                                                                                    |                         |         |         |
| CS01014D04   | 1        | ATP synthase subunit gamma, mitochondrial precursor (P26360, <i>Ipomoea batatas</i> )              | -0.6712                 | -1.1211 | -0.1233 |
| CS01017F09   | 1        | Oxygen-evolving enhancer protein 1, chloroplast precursor (P26320,<br>S. tuberosum)                | 0.2405                  | -1.1988 | -0.9008 |
| CS01009F09   | 4        | Glyceraldehyde-3-phosphate dehydrogenase A, chloroplast precursor (P09043, <i>N. tabacum</i> )     | 0.0467                  | -0.7737 | -1.2489 |
| CS01007B02   | 4        | Plastidic aldolase (ABY58016, S. tuberosum)                                                        | -0.5482                 | -0.4390 | -2.0273 |
| CS01005C04   | 4        | Putative photosystem I reaction centre PSI-D subunit precursor<br>(CAD89270, <i>S. tuberosum</i> ) | 0.2619                  | -0.6791 | -1.096  |
| CS01011E09   | 4        | Ribulose bisphosphate carboxylase small chain, chloroplast (AAC17126, C. annuum)                   | -0.1326                 | -1.2067 | -1.3169 |
| CS01003C02   | 6        | ATP:citrate lyase (AAK13318, C. annuum)                                                            | -0.0980                 | 0.9539  | 1.1944  |
| CS01014G11   | 6        | Citrate synthase (CAA59008, N. tabacum)                                                            | -0.4563                 | 0.2032  | 1.267   |

Table 3 Functional classification of transcripts differentially regulated by MV treatment in hot pepper

| EST ID Cluster | Strongest BLASTX Hit | Time after MV treatment                                                                   |         |         |         |
|----------------|----------------------|-------------------------------------------------------------------------------------------|---------|---------|---------|
| EST ID Cluster |                      | Subligest BLASTA HIL                                                                      | 1 h     | 6 h     | 12 h    |
|                | N WITH               | THE ENVIRONMENT                                                                           |         |         |         |
| CS01018A04     | 1                    | Unknown (ABU45188, Capsicum frutescens)                                                   | -0.1676 | -1.0926 | -0.1520 |
| METABOLIS      | М                    |                                                                                           |         |         |         |
| CS01014A06     | 1                    | Aconitase (AAP30039, Lycopersicon pennellii)                                              | 0.4801  | -1.1559 | -0.5757 |
| CS01007C03     | 1                    | Ketol-acid reductoisomerase (CAA48253, A. thaliana)                                       | 0.1932  | -1.9717 | -1.2082 |
| CS01020A06     | 3                    | Glutamate-cysteine ligase, chloroplast precursor (O22493, L. esculentum)                  | -0.2493 | 1.2282  | 2.9419  |
| CS01005C09     | 3                    | L-allo-threonine aldolase-related protein (ABB72802, S. tuberosum)                        | -0.2069 | 0.2796  | 2.3469  |
| CS01020D02     | 3                    | Microsomal omega-6-desaturase (AAT72296, N. tabacum)                                      | 0.3764  | -0.0230 | 2.4241  |
| CS01003D05     | 3                    | Omega-6 desaturase (CAI48076, C. chinense)                                                | 0.1526  | -0.2137 | 2.3619  |
| CS01003A01     | 3                    | Omega-6 fatty acid desaturase (CAI48074, Capsicum chinense)                               | 0.2653  | 0.9925  | 3.4143  |
| CS01008F10     | 3                    | Tropinone reductase-1 (BAA13547, Hyoscyamus niger)                                        | -0.9815 | 0.2954  | 2.0338  |
| CS01015E08     | 4                    | GDSL-motif lipase/hydrolase family protein (NP_190416, A. <i>thaliana</i> )               | 0.6310  | -0.3921 | -1.8855 |
| CS01005F08     | 4                    | S-adenosyl-L-methionine synthetase (AAD56396, Petunia x hybrida)                          | 0.4178  | -1.0089 | -1.4704 |
| CS01014G04     | 6                    | Mevalonate disphosphate decarboxylase (ABW87316, S. lycopersicum)                         | 0.2049  | 0.4139  | 1.3316  |
| CS01004B08     | 6                    | Resveratrol/hydroxycinnamic acid O-glucosyltransferase (ABH03018, <i>Vitis labrusca</i> ) | -0.7702 | 0.4306  | 1.4844  |
| CS01012F04     | 6                    | Isoamylase isoform 1 (AAN15317, S. tuberosum)                                             | 0.8314  | 1.4009  | 1.6885  |
| CS01017H09     | 6                    | Phenylpropanoid:glucosyltransferase 1 (AAK28303, N. tabacum)                              | 0.4170  | 1.2210  | 1.5387  |
| CS01018G05     | 6                    | Putative oxalyl-CoA decarboxylase (AAP69814, V. vinifera)                                 | 0.8842  | 1.6687  | 2.2482  |
| CS01011F06     | 6                    | Nitrite reductase (AAC17127, C. annuum)                                                   | 0.9154  | 1.0780  | 1.5031  |
| CS01017C11     | 6                    | Putative short-chain type alcohol dehydrogenase (AAN32641, S. tuberosum)                  | 1.0873  | 0.5898  | 2.0412  |
| CS01012F06     | 6                    | Resveratrol/hydroxycinnamic acid O-glucosyltransferase (ABH03018,<br>V. labrusca)         | 1.0811  | 1.6295  | 2.0516  |
| CS01008G12     | 6                    | Short-chain dehydrogenase/reductase (SDR) family protein (NP_567300, <i>A. thaliana</i> ) | 0.4395  | 0.8092  | 2.0172  |
| CS01020F08     | 6                    | Glutamate synthase, chloroplast precursor (NADH-GOGAT) (Q03460,<br>Medicago sativa)       | 0.7333  | 3.6489  | 2.2988  |
| PROTEIN SY     | NTHESIS              |                                                                                           |         |         |         |
| CS01015E01     | 1                    | Elongation factor 1-alpha-like protein (ABC01896, S. tuberosum)                           | -0.0949 | -1.3895 | -0.6559 |
| CS01011G02     | 1                    | Poly(A)-binding protein (AAF66823, <i>N. tabacum</i> )                                    | -0.4259 | -1.3289 | -0.4500 |
| CS01019A10     | 4                    | AGO4-2 (ABC61505, <i>Nicotiana benthamiana</i> )                                          | -0.8797 | -1.3585 | -1.3306 |
| CS01005C03     | 4                    | Poly(A)-binding protein (AAF66823, <i>N. tabacum</i> )                                    | -0.4800 | -0.9623 | -1.3964 |
| CS01011A05     | 6                    | 60S Ribosomal protein L10-like protein (ABB17003, <i>S. tuberosum</i> )                   | 0.6836  | 0.9975  | 1.3879  |
| PROTEIN WI     | TH BIND              | ING FUNCTION OR COFACTOR REQUIREMENT                                                      |         |         |         |
| CS01017B08     | 3                    | Glutathione S-transferase T1 (AAG16756, Lycopersicon esculentum)                          | -0.1997 | 1.3230  | 2.4610  |
| CS01004A10     | 6                    | Glutathione-S-transferase (AAX20044, Capsicum annuum)                                     | 0.4474  | 0.5617  | 1.7841  |
|                | FION NOT             | Г YET CLEAR-CUT                                                                           |         |         |         |
| CS01011G05     | 1                    | Nuclear RNA binding protein-like (ABA81884, S. tuberosum)                                 | 0.2611  | -1.6577 | -0.2120 |
| CS01020E07     | 1                    | RNA helicase (CAA09205, A. thaliana)                                                      | 0.0668  | -2.2707 | -1.0664 |
| CS01015B07     | 3                    | Cytochrome P450 (AAF27282, C. annuum)                                                     | -0.7116 | 1.2992  | 3.5732  |
| CS01014H03     | 6                    | Epoxide hydrolase (ABN08020, Medicago truncatula)                                         | 0.3223  | 1.3564  | 1.0962  |
| CS01003D06     | 6                    | Putative membrane protein (CAC37355, S. tuberosum)                                        | 0.2922  | 0.6946  | 1.9123  |

| EST ID Clus | Cluster | r Strongest BLASTX Hit —                                                               | Time after MV treatment |         |         |  |
|-------------|---------|----------------------------------------------------------------------------------------|-------------------------|---------|---------|--|
| EST ID      | Cluster |                                                                                        | 1 h                     | 6 h     | 12 h    |  |
| CS01012C11  | 6       | Unnamed protein product (CAO68407, V. vinifera)                                        | 0.2447                  | 0.6158  | 1.5439  |  |
| CS01013E06  | 6       | Avr9/Cf-9 rapidly elicited protein 140 (AAV92899, N. tabacum)                          | 0.9969                  | 1.4306  | 1.1983  |  |
| CS01017G03  | 6       | Late embryogenis abundant protein 5 (AAC06242, N. tabacum)                             | 0.6409                  | 1.3896  | 1.8663  |  |
| CS01009F08  | 6       | SAR8.2 protein precursor (AAL16783, C. annuum)                                         | 0.7110                  | 1.5107  | 2.0950  |  |
| CS01016C10  | 6       | Putative pathogenesis related protein (CAI48023, C. annuum)                            | 1.2096                  | 1.5040  | 3.0302  |  |
| CS01007H12  | 6       | WRKY-type transcription factor (ABD65255, C. annuum)                                   | 1.2399                  | -0.2727 | 1.3710  |  |
| CS01008E01  | 6       | Luminal-binding protein 5 precursor (BiP 5) (Q03685, N. tabacum)                       | 0.9114                  | 1.4015  | 1.1502  |  |
| UNCLASSIFI  | ED PROT | EINS                                                                                   |                         |         |         |  |
| CS01004C03  | 1       | Glutamate decarboxylase isozyme 1 (AAC24195, N. tabacum)                               | -0.4125                 | -1.8729 | -0.7721 |  |
| CS01007H10  | 1       | Protein disulfide isomerase (AAT39459, I. batatas)                                     | -0.8186                 | -1.3931 | -0.6466 |  |
| CS01016H11  | 1       | Unnamed protein product (CAO21490, V. vinifera)                                        | -0.4220                 | -1.2057 | -0.6679 |  |
| CS01015B06  | 1       | Unnamed protein product (CAO39382, V. vinifera)                                        | -0.7679                 | -1.4984 | -0.5703 |  |
| CS01008G02  | 1       | Unnamed protein product (CAO63461, V. vinifera)                                        | -0.3723                 | -1.3789 | -0.8686 |  |
| CS01003C05  | 1       | Unnamed protein product (CAO65444, V. vinifera)                                        | -0.1976                 | -1.6549 | -0.8760 |  |
| CS01003C09  | 1       | Unnamed protein product (CAO68293, V. vinifera)                                        | -0.1116                 | -1.1939 | -0.0469 |  |
| CS01003E10  | 1       | Vitamin C defective 2 (NP_567759, A. thaliana)                                         | -0.0218                 | -1.5550 | -0.6970 |  |
| CS01020G01  | 3       | CYP72A58 (ABC69422, N. tabacum)                                                        | -0.3772                 | 0.4081  | 2.4885  |  |
| CS01019G11  | 3       | Unnamed protein product (CAO17291, V. vinifera)                                        | -0.0984                 | 0.9040  | 2.1215  |  |
| CS01020B06  | 4       | Chalcone-flavanone isomerase family protein (ABK96098, <i>A. thaliana</i> )            | -0.5354                 | 0.1479  | -2.2927 |  |
| CS01018C01  | 4       | Epidermis-specific secreted glycoprotein EP1 precursor (Q39688, <i>Daucus carota</i> ) | -1.3266                 | -0.3631 | -1.9882 |  |
| CS01003D04  | 4       | FLK (AAX51268, A. thaliana)                                                            | -0.4598                 | -0.7917 | -1.4343 |  |
| CS01003A03  | 4       | Unknown protein (NP 566847, A. thaliana)                                               | -0.0508                 | -0.3477 | -1.0459 |  |
| CS01017B11  | 6       | Unnamed protein product (CAO45614, V. vinifera)                                        | 0.9005                  | 0.2756  | 1.3354  |  |
| CS01012B04  | 6       | Histone H1 (P40267, Lycopersicon pennellii)                                            | 0.9994                  | 1.1904  | 1.3219  |  |
| CS01005D05  | 6       | Hypothetical protein (CAN73253, V. vinifera)                                           | 0.2610                  | 0.8879  | 2.0266  |  |
| CS01020F07  | 6       | Unnamed protein product (CAO63741, V. vinifera)                                        | 0.3729                  | 0.9566  | 1.9067  |  |
| CS01014E09  | 6       | Monoterpene synthase 2 (AAX69064, S. lycopersicum)                                     | 1.7563                  | 1.8360  | 2.7723  |  |
| CS01017C03  | 6       | Unnamed protein product (CAO22510, V. vinifera)                                        | 0.7866                  | 1.8934  | 2.3880  |  |

have shown that PR genes have been induced by several plant hormones including salicylic acid as well as pathogen attack (van Loon et al. 2006; Loake and Grant 2007). PR genes identified from this study started to be expressed at 6 h after MV treatment and then reached at the highest level after 12 h treatment (Table 2). This PR gene expression might be followed by the expression of the transcription factors such as WRKY factor identified from this study. The increased expression of PR genes after MV treatment also can be a line of evidence for the possible close relationship between oxidative stress and the response against plant pathogen infection.

Fatty acids are a component of cellular membrane and also precursors for the plant hormone, jasmonic acid, which plays essential roles in pollen maturation and dehiscence and wound-induced defense against biotic attacks (Park et al. 2002; Wasternack 2007). Plant fatty acids are desaturated by introducing double bonds on their fatty acyl chains by a number of fatty acid desaturases. An  $\omega$ -6 FAD gene was very strongly expressed at 6 h treatment and maintained its strong expression up to 12 h after treatment (Table 2 and Fig. 2). In Arabidopsis, FAD2 gene (At3g12120) was induced in leaves at 4 h after treatment of 10  $\mu$ M MV (http://urgv.evry.inra.fr/cgi-bin/projects/CATdb/consult\_expce.pl?experiment\_id=116).

Accordingly, the increased expression of this gene after MV treatment may be required to meet enhanced cellular demands for the reorganization of cellular membrane and modification of lipids. The high level expression of  $\omega$ -6 FAD gene may be also essential to increase jasmonic acid

level for the rapid response against the oxidative stress, which is known to share the signaling network with woundinduced pathogen attack (Mahalingam et al. 2003).

ROS are continuously generated as toxic by-products of many essential metabolic pathways, including photosynthesis. Because they are highly reactive, ROS cause irreversible damage to major cellular components such as lipids, proteins, and nucleic acids. However, evidences show that  $H_2O_2$ , one of the ROS, plays important roles as second messenger in controlling various biological processes, including programmed cell death, stomatal closure, and defense responses to environmental stresses (Mittler and Berkowitz 2001). Recently, some reports revealed that MAP kinase cascade is involved in signaling pathway by H<sub>2</sub>O<sub>2</sub> from biotic and abiotic stresses (Hua et al. 2006; Liu et al. 2007). In this study, CS01016G09 clone shared 54% similarity with ATMKK4 (Arabidopsis thaliana mitogenactivated protein kinase kinase 4). Its expression was induced at 1 h after MV treatment. Considering that ATMKK4 is known as a signaling component inducing hypersensitive response when transiently expressed in tobacco leaf (Yuasa et al., 2001), CS01016G09 gene product could be a component of MAP kinase signaling cascade operating under ROS stress in hot pepper.

In this study, EST and microarray have provided the means to analyze the expression profiles in response to oxidative stress by MV treatment. This is the first report for the mass analysis using ESTs and microarray on oxidative stress from hot pepper. The information and genetic material from this study will be very useful to elucidate the functional roles of the identified genes.

## Acknowledgments

This research was supported in part by Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2006-0050138).

## References

Apel k, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373-399

- Bosland PW, Votava EJ (1999) 'NuMex Primavera' jalapeno. HortScience 33:1085-1086
- Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the *Arabidopsis* transcriptome by oxidative stress. Plant Physiol 127:159-172
- Desikan R, Burnett EC, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in *Arabidopsis thaliana* suspension cultures. J Exp Bot 49:1767-1771
- Dodge AD (1971) The mode of action of the bipyridylium herbicides, paraquat and diquat. Endeavour 30:130-135
- Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199-206
- Foyer CH, Descourvières P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507-523
- Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inzé D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436-445
- Gao Q, Zhang L (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbatedeficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165:138-148
- Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091-1101
- Grant JJ, Yun BW, Loake GJ (2000)Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J 24:569-582
- Guo Y, Gan S (2005) Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol 71:83-112
- Hua ZM, Yang X, Fromm ME (2006) Activation of the NaCland drought-induced RD29A and RD29B promoters by constitutively active *Arabidopsis* MAPKK or MAPK proteins. Plant Cell Environ 29:1761-1770
- Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate *miR398* expression in *Arabidopsis*. Planta 229:1009-1014
- Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in *Arabidopsis*. Science 284:654-657
- Knapp, S (2002) Tobacco to tomatoes: a phylogenetic perspective

on fruit diversity in the Solanaceae. J Exp Bot 377:2001-2022

- Kwon, SI and An CS (2003) Cloning and expression of mitochondrial *MnSOD* from the small radish (*Raphanus* sativus L.). Mol Cells 16:194-200
- Langebartels C, Schraudner M, Heller W, Ernst D, Sandermann H (2000) Oxidative stress and defense reactions in plants exposed to air pollutants and UV-B radiation. *In* Inze D, Montagu MV, eds, Oxidative Stress in Plants, Harwood Academic Publishers, London, pp 105-135
- Lee H, Cho HH, Kim I-C, Yim JH, Lee HK, Lee YK (2008) Expressed sequence tag analysis of Antarctic hairgrass *Deschampsia antarctica* from King George Island, Antarctica. Mol Cells 25:258-264
- Lee H, Hur CG, Oh CJ, Kim HB, Pakr SY, An CS (2004) Analysis of the root nodule-enhanced transcriptome in soybean. Mol Cells 18:53-62
- Lee S, Yun S-C (2006) The ozone stress transcriptome of pepper (*Capsicum annuum* L.). Mol. Cells 21:197-205
- Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S (2007) Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 51:941-954
- Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol 10:466-472
- Mahalingam R, Fedoroff N (2001) Screening insertion libraries for mutations in many genes simultaneously using DNA microarrays. Proc Natl Acad Sci USA 98:7420-7425
- Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of *Arabidopsis*. Genome Biol 4:R20
- Mittler R, Berkowitz G (2001) Hydrogen peroxide, a messenger with too many roles? Redox Rep 6:69-72
- Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490-498
- Moscone EA, Baranyi M, Ebert I, Greilhuber J, Ehrendorfer F, Hunziker AT (2003) Analysis of nuclear DNA content in *Capsicum* (Solanaceae) by flow cytometry and Feulgen densitometry. Ann Bot 92:21-29
- Nishiuchi S, Liu S, Takano T (2007) Isolation and characterization of a metallothionein-1 protein in *Chloris virgata* Swartz that enhances stress tolerances to oxidative, salinity and carbonate stress in *Saccharomyces cerevisiae*. Biotechnol Lett 29:1301-1305

- Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333-359
- Ort DR, Baker NR (2002) A photoprotective role for  $O_{(2)}$  as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193-198
- Palmeira CM, Moreno AJ, Madeira VM (1995) Mitochondrial bioenergetics is affected by the herbicide paraquat. Biochim Biophys Acta 1229:187-192
- Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in *Arabidopsis* due to a block in jasmonic acid biosynthesis. Plant J 31:1-12
- Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731-734
- Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2-18
- Quinn J, Findlay VJ, Dawson K. Millar JBA, Jones N (2002) Distinct regulatory proteins control the graded transcriptional response to increasing H<sub>2</sub>O<sub>2</sub> levels in fission yeast *Schizosaccharomyces pombe*. Mol Biol Cell 13:805-816
- Supanjani KDL (2006) Hot pepper response to interactive effects of salinity and boron. Plant Soil Environ 52:227-233
- van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135-162
- Wahid A, Perveen M, Gelani S, Basra SM (2007) Pretreatment of seed with H<sub>2</sub>O<sub>2</sub> improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283-294
- Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (Lond) 100:681-697
- Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182-189
- Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis activation of plant catalase by calcium/calmodulin. Plant Biol 99: 4097-4102.
- Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001) Oxidative stress activates ATMPK6, an *Arabidopsis* homologue of MAP kinase. Plant Cell Physiol 42:1012-1016