• Title/Summary/Keyword: OC (Organic Carbon)

Search Result 131, Processing Time 0.025 seconds

Determination of Cholesterol, Fatty Acids and Polyaromatic Hydrocarbons in PM10 Particles Collected from Meat Charbroiling (고기구이 스모크에서 채취한 PM10입자에서 콜레스테롤, 지방산과 PAH의 분포)

  • Seo, Young-Hwa;Ko, Kwang-Youn;Jang, Young-Kee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.155-164
    • /
    • 2010
  • Emission from biomass combustion such as meat charbroiling is an important source of organic aerosol. Since source profiles are necessary input profiles for source apportionment of aerosol by a chemical mass balance model, meat cooking organic source profiles are developed by measuring organic marker compounds, including palmitic acid, stearic acid, oleic acid and cholesterol as well as PAH compounds. Emissions from meat and pork charbroiling are collected on quartz filters with a PM10-high volume sampler, extracted with organic solvents, derivatized with diazomethane/TMS and analyzed by GC/MS isotope dilution method. Organic and elemental carbon are also analyzed by an OCEC analyzer. Wt.% of cholesterol to the organic carbon(OC) content from beef and pork charbroiling is only 0.056 and 0.062, but wt. % of all saturated fatty acids to the OC content from beef and pork charbroiling is 2.727 and 2.022, and the wt% of all unsaturated fatty acids to the OC content is 0.278 and 0.438, respectively. Content of total PAH compounds to the OC content from beef charbroiling is higher than that from pork charbroiling, and those are 0.116 wt% and 0.044 wt%. Among PAH compounds benzo(a)pyrene as a single compound is account for 0.0071 wt% and 0.0023 wt% of OC content from beef and pork charbroiling. Ratios of marker compound to cholesterol are calculated, and those values are in good agreement with the values already reported at the food cooking emission, indicating that they can be used as organic source profiles for the apportionment of organic aerosol.

Determination of Amino Acids on Wintertime PM2.5 using HPLC-FLD (HPLC-FLD를 이용한 겨울철 PM2.5 중 아미노산 성분 분석)

  • Park, Da-Jeong;Cho, In-Hwan;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.482-492
    • /
    • 2015
  • Ground-based measurements were conducted from January 6 to 12 of 2015 for understanding characteristics of nitrogen containing carbonaceous aerosols as 16 amino acids at the Mokpo National University, Korea. The detailed amino acid components such as Cystine ($(SCH_2CH(NH_2)CO_2H)_2$) and Methionine ($C_5H_{11}NO_2S$) and their sources were analyzed by High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FLD) for behavior of secondary products in particulate matter. In addition, organic carbon (OC) and elemental carbon (EC) based on the carbonaceous thermal distribution (CTD), which provides detailed carbon signature characteristics relative to analytical temperature, and water soluble organic carbon (WSOC) by total organic carbon (TOC) analyzer were used to understand the carbon compound behaviors. The backward trajectories were discussed for originations of carbonaceous aerosols as well. Different airmasses were classified with the amino acids and OC thermal signatures. The results can provide to understand the aging process influenced by the long-range transport from East Sea area.

Comparison of OC and EC Measurement Results Determined by Thermal-optical Analysis Protocols (열광학적 분석 프로토콜에 의한 유기탄소와 원소탄소 측정값 비교)

  • Kim, Hyosun;Jung, Jinsang;Lee, Jinhong;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.449-460
    • /
    • 2015
  • Carbonaceous aerosol is generally classified into OC (organic carbon) and EC (elemental carbon) by thermal optical analysis. Both NIOSH (National institute of occupational safety and health) with high temperature (HighT) and IMPROVE-A (Interagency monitoring of protected visual environments) with low temperature (LowT) protocols are widely used. In this study, both protocols were applied for ambient $PM_{2.5}$ samples (Daejeon, Korea) in order to underpin differences in OC and EC measurements. An excellent agreement between NIOSH and IMPROVE-A protocol was observed for TC (total carbon). However, significant differences between OC and EC appeared and the differences were larger for EC than OC. The main differences between two protocols are temperature profile and charring correction method. For the same charring correction method, HighT_OC was 10% higher than LowT_ OC, while HighT_EC was 15% and 33% lower than LowT_EC for TOT (thermal-optical transmittance) and TOR (thermal-optical reflectance), respectively. This difference may be caused by the temperature of OC4 in He step and possibly difference in POC (pryorilized OC) formation. For the same temperature profile, OC by TOT was about 26% higher than that by TOR. In contrast, EC by TOT was about 50% lower than that by TOR. POC was also dependent on both temperature profile and the charring correction method, showing much distinctive differences for the charring correction method (i.e., POC by TOT to POC by TOR ratio is about 2). This difference might be caused by different characteristics between transmittance and reflectance for monitoring POC formation within filters. Results from this study showed that OC and EC depends on applied analysis protocol as shown other studies. Because of the nature of the thermal optical analysis, it may not be possible to have an absolute standard analysis protocol that is applicable for any ambient $PM_{2.5}$. Nevertheless, in order to provide consistent measurement results for scientists and policy makers, future studies should focus on developing a harmonized standard analysis protocol that is suitable for a specific air domain and minimizes variations in OC and EC measurement results. In addition, future elaborate studies are required to find and understand the causes of the differences.

Characteristics of Organic Carbon Species in Atmospheric Aerosol Particles at a Gwangju Area During Summer and Winter (여름 및 겨울철 광주지역 대기 에어로졸 입자의 유기탄소 특성)

  • Park, Seung-Shik;Hur, Jai-Young;Cho, Sung-Y.;Kim, Seung-J.;Kim, Young-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.675-688
    • /
    • 2007
  • To characterize organic and elemental carbon (OC and EC), and water-soluble organic carbon (WSOC) contents, daily $PM_{2.5}$ measurements were performed in August 2006 (summer) and Jan $11{\sim}Feb$ 12 2007 (winter) at an urban site of Gwangju. Daily size-segregated aerosol samples were also collected for WSOC analysis. No clear seasonal variations in EC and WSOC concentrations were observed, while seasonal differences in OC concentration, and OC/EC and WSOC/EC ratios were shown. The WSOC/OC ratio showed higher value in summer (0.56) than in winter (0.40), reflecting the greater enhancement of secondary WSOC formation at the site in summer. Secondary WSOC concentrations estimated using EC tracer method were in the range $0.0{\sim}2.1\;{\mu}g/m^3$ (average $0.42\;{\mu}g/m^3$) and $0.0{\sim}1.1\;{\mu}g/m^3\;(0.24\;{\mu}g/m^3)$, respectively, accounting for $0{\sim}51.6%$ (average 16.8%) and $0{\sim}52.5%$ (average 13.1 %) of the measured WSOC concentrations in summer and winter. Sometimes higher WSOC/OC ratio in winter than that in summer could be attributed to two reasons. One is that the stable atmospheric condition often appears in winter, and the prolonged residence time would strengthen atmospheric oxidation of volatile organic compounds. The other is that decrease of ambient temperature in winter would enhance the condensation of volatile secondary WSOC on pre-existing aerosols. In summertime, atmospheric aerosols and WSOC concentrations showed bimodal size distributions, peaking at the size ranges $0.32{\sim}0.56\;{\mu}m$ (condensation mode) and $3.2{\sim}5.6\;{\mu}m$ (coarse mode), respectively. During the wintertime, atmospheric aerosols showed a bimodal character, while WSOC concentrations showed a unimodal pattern. Size distributions of atmospheric aerosols and WSOC with a peak in the size range $0.32{\sim}0.56\;{\mu}m$ were observed for most of the measurement periods. On January 17, however, atmospheric aerosols and WOSC exhibited size distributions with modal peaks in the size range $1.0{\sim}1.8\;{\mu}m$, suggesting that the aerosol particles collected on that day could be expected to be more aged, i.e, longer residence time, than the aerosols at other sampling periods.

Chemical Characterization of Water-Soluble Organic Acids in Size-Segregated Particles at a Suburban Site in Saitama, Japan

  • Bao, Linfa;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.42-51
    • /
    • 2009
  • Saturated n-dicarboxylic acids ($C_2-C_7$, $C_9$), unsaturated dicarboxylic acids (maleic, fumaric, phthalic acid), ketocarboxylic acids (pyruvic, glyoxylic acid), and dicarbonyls (glyoxal, methylglyoxal) were determined in size-segregated samples with a high-volume Andersen air sampler at a suburban site in Saitama, Japan, May 12-17 and July 24-27, 2007 and January 22-31, 2008. The seasonal average concentrations of these detected organic acids were 670 $ng/m^3$, accounting for about 4.4-5.7% (C/C) of water-soluble organic carbon (WSOC) and 2.3-3.6% (C/C) of organic carbon (OC). The most abundant species of dicarboxylic acids was oxalic acid, followed by malonic, phthalic, or succinic acids. Glyoxylic acid and methyglyoxal were most abundant ketocarboxylic acid and dicarbonyl, respectively. Seasonal differences, size-segregated concentrations, and the correlations of these acids with ambient temperatures, oxidants, elemental carbon (EC), OC, WSOC, and ionic components were also discussed in terms of their corresponding sources and possible secondary formation pathways. The results suggested that photochemical reactions contributed more to the formation of particulate organic acids in Saitama suburban areas than did direct emissions from anthropogenic and natural sources. However, direct emissions of vehicles were also important sources of several organic acids in particles, such as phthalic and adipic acids, especially in winter.

Annealing effects of organic inorganic hybrid silica material with C-H hydrogen bonds (C-H 수소결합을 갖는 유무기 하이브리드 물질에서의 열처리 효과)

  • Oh, Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.20-25
    • /
    • 2007
  • In this paper, It was reported the dielectric constant in organic inorganic hybrid silica material such as SiOC film modeling of bond structure by annealing in organic properties. The organic inorganic hybrid silica material were deposited using bis-trimethylsilymethane (BTMSM, [(CH3)3Si]2CH2) and oxygen gas precursor by a plasma chemical vapor deposition (CVD). The organic inorganic hybrid silica material have three types according to the deposition condition. The dielectric constant of the films were performed MIS(Al/Si-O-C film/p-Si) structure. The C 1s spectra in organin inorganic silica materials with the flow rate ratio of O2/BTMSM=1.5 was organometallic carbon with the peak 282.9 eV by XPS. It means that organometallic carbon component is the cross-link bonding structure with good stability. The dielectric constant was the lowest at annealed films with cross-link bonding structure.

Contribution of Biomass Burning and Secondary Organic Carbon to Water Soluble Organic Carbon at a Suburban Site (교외지역 수용성유기탄소 내 식생연소 및 2차 유기탄소에 의한 기여량 연구)

  • Oh, Sea-Ho;Park, Eun-Ha;Yi, Seung-Muk;Shon, Zang-Ho;Park, Kihong;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.259-268
    • /
    • 2018
  • The $PM_{2.5}$ samples were collected for every 6th day during one year at a suburban site in the Namwonsi, Jeollanamdo, Republic of Korea. Samples were analyzed for elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC), and levoglucosan. Although the water-soluble fraction of fine particulate OC consistently showed over a year, levoglucosan fraction of WSOC varied considerably from month to month. In this study, non-biomass-burning WSOC ($WSOC_{NBB}$) and biomass-burning $WSOC_{BB}$ were calculated with measurements of organic source tracer, levoglucosan, to better understand the temporal distribution and sources of WSOC. Two methods of predicting the secondary organic carbon from the biomass-burning $WSOC_{BB}$ Method and the EC-tracer Method were compared. Poor correlations between SOC estimated between two methods suggested that the use of the EC tracer method to estimate SOC may be significantly flawed. Direct measurements of levoglucosan and WSOC can provide a reasonable estimate of secondary organic carbon concentrations.

The Relationship between the Fractionation Characteristics and Decomposition Rate of Organic Carbon in Nam River and Geumho River (남강 및 금호강에서 유기탄소 존재형태와 분해속도와의 관계)

  • Ho-Sub Kim;Seok-Gyu Kim;Seung-Young Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.2
    • /
    • pp.131-141
    • /
    • 2023
  • In this study, the relationship between organic carbon distribution characteristics and decomposition rate classified according to the particle size and biological degradation characteristics in water was investigated for the Nam river and Geumho river. The average concentrations of TOC in the Nam river and Geumho river were 2.7±1.2 mg/L and 5.0±1.2 mg/L, respectively, but the composition ratios for each type of organic carbon were similar. An average value of 80.9% of TOC was present as DOC and 72.8% of DOC consisted of Refractory-DOC (RDOC). In addition, the change in the RDOC composition ratio according to temporal and spatial distribution was the smallest. There was no difference in the decomposition rate of organic carbon except for TOC by the site (p≥0.108, one-way ANOVA), and the decomposition rates of Labile-POC (LPOC) and LDOC were similar at 0.139±0.102 and 0.137±0.149 day-1, respectively (p=0.110, paired t-test). The coefficient of variation (CV) of the decomposition rate of DOC (average 8.1%), which had the smallest composition ratio of organic carbon, was 1.1, showing the largest temporal variation. The TOC, POC, and DOC decomposition rates showed a significant correlation with the ratio of the initial concentration to the concentration after 25 days of decomposition (OC25/OC0) (r2=0.89~0.94, p<0.001), and the decomposition rates of LPOC and LDOC were significantly correlated with the ratio of the initial concentration to the concentration after 5 days of decomposition (LOC5/LOC0) (r2=0.67~0.75). This suggests that it is possible to estimate the decomposition rate through the concentration of each type of organic carbon.

The Study of PM2.5 and Exhaust Emission Characteristics in the Motorcycles according to Various Lubricants (윤활유 종류에 따른 이륜자동차 PM2.5 및 배출가스 특성 연구)

  • Lim, Yunsung;Lee, Jongtae;Park, Jangmin;Kim, Jeongsoo;Lee, Janghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.70-76
    • /
    • 2013
  • Because increased food delivery service and quick delivery service using motorcycle, registration numbers of motorcycles were sharply increased and it could contribute on worsening air quality. In this study, two models(50cc, 125cc) of motorcycle were tested by using three types of engine oil. Two motorcycles were tested with CVS-40 mode for emission characteristics such as CO, THC, NOx, Elemental Carbon(EC), Organic Carbon(OC), sulfate, soot and SOF(soluble organic fraction). Result of according to three types of lubricants which included phosphorus, sulfate ash impacted to particle matters so "C" lubricants is more higher PM than "A", "B" lubricants in this research.

Variations in the Monthly PM2.5 Concentrations and their Characteristics around the Busan Seaport Area (부산 항만 주변지역 PM2.5 농도의 월 변화 및 특성)

  • Kang, Nayeon;An, Joon Geon;Lee, Seon-Eun;Hyun, Sangmin
    • Journal of Environmental Science International
    • /
    • v.30 no.10
    • /
    • pp.845-861
    • /
    • 2021
  • This study investigated the variations in monthly PM2.5 concentrations and their characteristics at the sampling site (35.075°N, 129.080°E) around the Busan seaport area for six months (from August 2020 to January 2021). Monthly PM2.5 concentrations in the filtered samples ranged from 8.4 to 42.3 ㎍/m3 (average=19.6±8.2 ㎍/m3, n=50) and were generally high in August, December, and January, and low in September, October, and November. The variations of monthly PM2.5 concentrations showed similar patterns to those of the neighboring national air quality monitoring sites. The contents of Total Carbon (TC), Organic Carbon (OC), Elemental Carbon (EC), and OC/EC ratios in PM2.5 showed large variability during the study period. The OC/EC ratios ranged from 4.2 to 34.4, suggesting that the relative contributions of OC and EC to the PM2.5 concentrations changed temporally and might be related to their formation sources. Variations in the chemical components of and particle size distributions in PM2.5 showed that high PM2.5 concentrations were affected by various sources, such as sea salt and ship emission. The precursor gas concentrations were discussed in terms of monthly variations and their contributions to PM2.5 concentrations. However, further research is needed to understand the characteristics and behaviors of PM2.5 concentrations around the Busan seaport area.