DOI QR코드

DOI QR Code

Determination of Amino Acids on Wintertime PM2.5 using HPLC-FLD

HPLC-FLD를 이용한 겨울철 PM2.5 중 아미노산 성분 분석

  • Park, Da-Jeong (Department of Environmental Engineering, Mokpo National University) ;
  • Cho, In-Hwan (Department of Environmental Engineering, Mokpo National University) ;
  • Bae, Min-Suk (Department of Environmental Engineering, Mokpo National University)
  • Received : 2015.10.07
  • Accepted : 2015.10.14
  • Published : 2015.10.31

Abstract

Ground-based measurements were conducted from January 6 to 12 of 2015 for understanding characteristics of nitrogen containing carbonaceous aerosols as 16 amino acids at the Mokpo National University, Korea. The detailed amino acid components such as Cystine ($(SCH_2CH(NH_2)CO_2H)_2$) and Methionine ($C_5H_{11}NO_2S$) and their sources were analyzed by High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FLD) for behavior of secondary products in particulate matter. In addition, organic carbon (OC) and elemental carbon (EC) based on the carbonaceous thermal distribution (CTD), which provides detailed carbon signature characteristics relative to analytical temperature, and water soluble organic carbon (WSOC) by total organic carbon (TOC) analyzer were used to understand the carbon compound behaviors. The backward trajectories were discussed for originations of carbonaceous aerosols as well. Different airmasses were classified with the amino acids and OC thermal signatures. The results can provide to understand the aging process influenced by the long-range transport from East Sea area.

Keywords

References

  1. Akyuz, M. and S. Ata (2006) Simultaneous determination of aliphatic and aromatic amines in water and sediment samples by ion-pair extraction and gas chromatographyemass spectrometry, J. Chromatogr. A, 1129, 88-94. https://doi.org/10.1016/j.chroma.2006.06.075
  2. Aznar, M., E. Canellas, and C. Nerin (2009) Quantitative determination of 22 primary aromatic amines by cation-exchange solid-phase extraction and liquid chromatographyemass spectrometry, J. Chromatogr. A, 1216, 5176-5181. https://doi.org/10.1016/j.chroma.2009.04.096
  3. Bae, M.S., J. Schauer, J. DeMinter, J. Turner, D. Smith, and R. Cary (2004) Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method, Atmos. Environ., 38, 2885-2893. https://doi.org/10.1016/j.atmosenv.2004.02.027
  4. Bae, M.S., S.S. Park, and Y.J. Kim (2013) Characteristics of carbonaceous aerosols measured at Gosan- Based on analysis of thermal distribution by carbon analyzer and organic compounds by GCMS, J. Korean Soc. for Atmos. Environ., 6, 722-733.
  5. Busca, G. and C. Pistarino (2003) Abatement of ammonia and amines from waste gases: a summary, J. Loss Prev. Process Ind., 16, 157-163. https://doi.org/10.1016/S0950-4230(02)00093-1
  6. Carlsen, L., O.A. Kenesova, and S.E. Batyrekova (2007) A preliminary assessment of the potential environmental and human health impact of unsymmetrical dimethylhydrazine as a result of space activities, Chemosphere, 67, 1108-1116. https://doi.org/10.1016/j.chemosphere.2006.11.046
  7. Clegg, S.L., M.J. Kleeman, R.J. Griffin, and J.H. Seinfeld (2008) Effects of uncertainties in the thermodynamic properties of aerosol components in an air quality modelepart 1: treatment of inorganic electrolytes and organic compounds in the condensed phase, Atmos. Chem. Phys., 8, 1057-1085. https://doi.org/10.5194/acp-8-1057-2008
  8. Draxler, R.R. and G.D. Rolph (2015) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/HYSPLIT.php), NOAA Air Resources Laboratory, College Park, MD.
  9. Facchini, M.C., M. Mircea, S. Fuzzi, and R.J. Charlson (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nat., 401, 257-259. https://doi.org/10.1038/45758
  10. Filippo, P.D., D. Pomata, C. Riccardi, F. Buiarelli, V. Gallo, and A. Quaranta (2014) Free and combined amino acids in size-segregated atmospheric aerosol samples, Atmos. Environ., 98, 179-189. https://doi.org/10.1016/j.atmosenv.2014.08.069
  11. Ge, Xinlei, A.S. Wexler, and S.L. Clegg (2011) Atmospheric amines e Part I. A review, Atmos. Environ., 45, 524-546. https://doi.org/10.1016/j.atmosenv.2010.10.012
  12. Gibb, S.W., R.F.C. Mantoura, and P.S. Liss (1995) Analysis of ammonia and methylamines in natural waters by flow injection gas diffusion coupled to ion chromatography, Anal. Chim. Acta., 316, 291-304. https://doi.org/10.1016/0003-2670(95)00372-7
  13. Gibb, S.W., R.F.C. Mantoura, and P.S. Liss (1999) Oceanatmosphere exchange and atmospheric speciation of ammonia and methylamines in the region of the NW Arabian Sea, Global Biogeochem. Cycles, 13, 161-178. https://doi.org/10.1029/98GB00743
  14. Gray, H.A., G.R. Cass, J.J. Huntzicker, E.K. Heyerdahl, and J.A. Rau (1986) Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles, Environ. Sci. Technol., 20, 580-589. https://doi.org/10.1021/es00148a006
  15. Greim, H., H.J. Klimisch, M. Oeben-Negele, and K. Ziegler- Skylakakis (1998) Toxicity of aliphatic amines: structure-activity relationship, Chemosphere, 36, 271-295. https://doi.org/10.1016/S0045-6535(97)00365-2
  16. Grimmer, G., K.W. Naujack, and G. Dettbarn (1987) Gas chromatographic determination of polycyclic aromatic hydrocarbons, aza-arenes, aromatic amines in the particle and vapor phase of mainstream and sidestream smoke of cigarettes, Toxicol. Lett., 35, 117-124. https://doi.org/10.1016/0378-4274(87)90095-6
  17. Kieber, R.J., M.S. Long, and J.D. Willey (2005) Factors influencing nitrogen speciation in coastal rainwater, J. Atmos. Chem., 52, 81-99. https://doi.org/10.1007/s10874-005-8354-6
  18. Leach, J., A. Blanch, and A.C. Bianchi (1999) Volatile organic compounds in an urban airborne environment adjacent to a municipal incinerator, waste collection centre and sewage treatment plant, Atmos. Environ., 33, 4309-4325. https://doi.org/10.1016/S1352-2310(99)00115-6
  19. Lee, T., J. Choi, G. Lee, J. Ahn, J. Park, S.A. Atwood, M. Schurman, Y. Choi, Y. Chung, and J.L. Collett Jr. (2015) Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer, Atmos. Environ., 120, 297-306. https://doi.org/10.1016/j.atmosenv.2015.08.038
  20. Lee, Y., M. Park, S. Jung, S. Kim, M. Jo, I. Song, Y. Lyu, Y. Lim, J. Kim, H. Jung, S. Lee, W. Choi, J. Ahn, M. Lee, H. Kang, S. Park, S. Seo, D. Jung, J. Hyun, J. Park, T. Hwang, Y. Hong, J. Hong, and H. Shin (2015) Characteristics of Particulate Carbon in the Ambient Air in the Korean Peninsula, J. Korean Soc. for Atmos. Environ., 31, 330-344. https://doi.org/10.5572/KOSAE.2015.31.4.330
  21. Murphy, S.M., A. Sorooshian, J.H. Kroll, N.L. Ng, P. Chhabra, C. Tong, J.D. Surratt, E. Knipping, R.C. Flagan, and J.H. Seinfeld (2007) Secondary aerosol formation from atmospheric reactions of aliphatic amines, Atmos. Chem. Phys., 7, 2313-2337. https://doi.org/10.5194/acp-7-2313-2007
  22. Park, D.J., J.Y. Ahn, H.J. Shin, and M.S. Bae (2014) Characteristics of $PM_{2.5}$ Carbonaceous Aerosol using PILSTOC and GC/MS-TD in Seoul, J. Korean Soc. for Atmos. Environ., 30, 461-476. https://doi.org/10.5572/KOSAE.2014.30.5.461
  23. Rappert, S. and R. Muller (2005) Odor compounds in waste gas emissions from agricultural operations and food industries, Waste Manage. Res., 25, 887-907. https://doi.org/10.1016/j.wasman.2005.07.008
  24. Schade, G.W. and P.J. Crutzen (1995) Emission of aliphatic amines from animal husbandry and their reactions: potential source of $N_2O$ and HCN, J. Atmos. Chem., 22, 319-346. https://doi.org/10.1007/BF00696641
  25. Schauer, J.J., M.J. Kleeman, G.R. Cass, and B.R.T Simoneit (1999) Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling, Environ. Sci. Technol., 33, 1566-1577. https://doi.org/10.1021/es980076j
  26. Schauer, J.J., W.F. Rogge, L.M. Hildemann, M.A. Mazurek, and G.R. Cass (1996) Source apportionment of airborne particulate matter using organic compounds as tracers, Atmos. Environ., 30, 3837-3855. https://doi.org/10.1016/1352-2310(96)00085-4
  27. Silva, P.J., M.E. Erupe, D. Price, J. Elias, O.G. Malloy, Q. Li, B. Warren, and D.R. Cocker III (2008) Trimethylamine as precursor to secondary organic aerosol formation via nitrate radical reaction in the atmosphere, Environ. Sci. Technol., 42, 4689-4696. https://doi.org/10.1021/es703016v
  28. Smith, J.N., K.C. Barsanti, H.R. Friedli, M. Ehn, M. Kulmala, D.R. Collins, J.H. Scheckman, B.J. Williams, and P.H. McMurry (2010) Observations of aminium salts in atmospheric nanoparticles and possible climatic implications, Proc. Natl. Acad. Sci., 107, 66434-66439.
  29. Sullivan, A.P., R.J. Weber, A.L. Clements, J.R. Turner, M.S. Bae, and J.J. Schauer (2004) A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: Results from an urban site, Geophys. Res. Lett., 31, L13105. https://doi.org/10.1029/2004GL019681
  30. Willey, J.D., R.J. Kieber, M.S. Eyman, and G.B. Avery Jr. (2000) Rainwater dissolved organic carbon: concentrations and global flux, Global Biogeochem. Cycles, 14, 139-148. https://doi.org/10.1029/1999GB900036