DOI QR코드

DOI QR Code

The Relationship between the Fractionation Characteristics and Decomposition Rate of Organic Carbon in Nam River and Geumho River

남강 및 금호강에서 유기탄소 존재형태와 분해속도와의 관계

  • Received : 2023.01.13
  • Accepted : 2023.02.15
  • Published : 2023.03.30

Abstract

In this study, the relationship between organic carbon distribution characteristics and decomposition rate classified according to the particle size and biological degradation characteristics in water was investigated for the Nam river and Geumho river. The average concentrations of TOC in the Nam river and Geumho river were 2.7±1.2 mg/L and 5.0±1.2 mg/L, respectively, but the composition ratios for each type of organic carbon were similar. An average value of 80.9% of TOC was present as DOC and 72.8% of DOC consisted of Refractory-DOC (RDOC). In addition, the change in the RDOC composition ratio according to temporal and spatial distribution was the smallest. There was no difference in the decomposition rate of organic carbon except for TOC by the site (p≥0.108, one-way ANOVA), and the decomposition rates of Labile-POC (LPOC) and LDOC were similar at 0.139±0.102 and 0.137±0.149 day-1, respectively (p=0.110, paired t-test). The coefficient of variation (CV) of the decomposition rate of DOC (average 8.1%), which had the smallest composition ratio of organic carbon, was 1.1, showing the largest temporal variation. The TOC, POC, and DOC decomposition rates showed a significant correlation with the ratio of the initial concentration to the concentration after 25 days of decomposition (OC25/OC0) (r2=0.89~0.94, p<0.001), and the decomposition rates of LPOC and LDOC were significantly correlated with the ratio of the initial concentration to the concentration after 5 days of decomposition (LOC5/LOC0) (r2=0.67~0.75). This suggests that it is possible to estimate the decomposition rate through the concentration of each type of organic carbon.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립환경과학원의 지원을 받아 수행하였습니다(11-1480523-004829-01).

References

  1. An, I., Park, H., Chung, S., Ryu, I., Choi, J., and Kim, J. (2020). Analysis of organic carbon cycle and mass balance in Daecheong reservoir using three-dimensional hydrodynamics and water quality model, Journal of Korean Society on Water Environment, 36(4), 284-299. [Korean Literature]
  2. Carlson, A. A., Hansell., D. A., Peltzer, E. T., and Smith Jr, W. O. (2000). Stocks and dynamics of dissolved and particulate organic matter in the Southern Ross Sea, Antarctica, Deep Sea Research Part II: Topical Studies in Oceanography, 47, 3201-3225. https://doi.org/10.1016/S0967-0645(00)00065-5
  3. Carlson, C. A., Giovannon, S. J., Hansell, D. A., Goldberg, S. J., Parsons, R., Otero, M. P., Vergin, K., and Wheeler, B, R. (2002). Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the Northwestern Sargasso Sea, Aquatic Microbial Ecology, 30, 19-36. https://doi.org/10.3354/ame030019
  4. Cotner, J. B., Ammerman, J. W., Peele, E. R., and Bentzen, E. (1997). Phosphorus-limited bacterioplankton growth in the Sargasso Sea, Aquatic Microbial Ecology, 13, 141-149. https://doi.org/10.3354/ame013141
  5. Cottrell, M. T. and Kirchman, D. L. (2000). Natural assemblages of marine proteobacteria and members of the cytophaga-flavobacter cluster consuming low and high molecular weight dissolved organic matter, Applied and Environmental. Microbiology, 66(4), 1692-1697. https://doi.org/10.1128/AEM.66.4.1692-1697.2000
  6. Edzwald, J. K. (1993). Coagulation in drinking water treatment: Particles, organics and coagulants, Water Science and Technology, 27(11), 21-35. https://doi.org/10.2166/wst.1993.0261
  7. Fukushima, T., Park, J. C., Imai, A., and Matsushige, K. (1996). Dissolved organic carbon in a Eutrophic lake; Dynamics, biodegradability and origin, Aquatic Sciences, 58(2), 139-157. https://doi.org/10.1007/BF00877112
  8. George J. S., Maurice, L. R., and Russell, H. S. (1960). A reappraisal of deoxygenation rates of raw sewage, effluents, and receiving waters, Journal Water Pollution Control Federation, 32(11), 1212-1231.
  9. Jang, C. W., Kim, J. K., Kim, D. H., Kim, B., and Park, J. H. (2008). The distribution of organic carbon and its decomposition rate in the Kum river, Korea, Journal of Korean Society on Water Environment, 24(2), 174-179. [Korean Literature]
  10. Jung, K. Y., Park, M. H., Hur, J., Lee, S., and Shin, J. K. (2009). Comparison of spectroscopic characteristics and chemical oxygen demand efficiencies for dissolved organic matters from diverse dources, Journal of Korean Society on Water Environment, 25(4), 589-596. [Korean Literature]
  11. Kim, H. S., Kim, S. Y., Park, J., and Han, M. (2017). The fractionation characteristics of organic matter in pollution sources and river, Journal of Korean Society on Water Environment, 33(5), 580-586. [Korean Literature]
  12. Lee, B. M., Park, M. H., Lee, T. H., Hur, J., and Yang, H. (2009). Predictation of the concentrations and distributions of refractory organic matters in wastewater using spectroscopic characteristics, Journal of Korean Society on Water Environment, 25(4), 560-567. [Korean Literature]
  13. Lee, B., Lee, T. H., and Hur, J. (2011). Development of estimation indices for refractory organic matter in the Han-river basin using organic matter parameters and spectroscopic characteristics, Journal of Korean Society on Water Environment, 27(5), 625-633. [Korean Literature] https://doi.org/10.15681/KSWE.2011.27.5.8
  14. Lee, T. H., Lee, B., Hur, J., Jung, M. M., and Kang, T. G. (2010). Conversion of CODMn and refractory organic matter concentrations for treated sewage using regression equations, Journal of Korean Society on Water Environment, 26(6), 969-975. [Korean Literature]
  15. Namour, P. and Mouller, M. C. (1998). Fractionation of organic matter from wastewater treatment plants before and after a 21-day biodegradability test: A physical-chemical method for measurement of the refractory part of effluents, Water Research, 32(7), 2224-2231. https://doi.org/10.1016/S0043-1354(97)00428-4
  16. National Institute of Environmental Research (NIER). (2008). Application of parameters and coefficients of river water quality model for TMDL plan in Korea, NIER NO. 2008-29-979, National Institute of Environmental Research. [Korean Literature]
  17. National Institute of Environmental Research (NIER). (2021). The method of water quality pollution process test, No. 2021-93, Notification of the National Institute of Environmental Research. [Korean Literature]
  18. National Institute of Environmental Research (NIER). (2022). A study for TOC-customized TMDL plan, NIER NO. SP2022-023, National Institute of Environmental Research. [Korean Literature]
  19. Ogawa, H., Amagai, Y., Koike, L., Kaiser, K., and Benner, R. (2001). Production of refractory dissolved organic matter by bacteria, Science, 292(5518), 917-920. https://doi.org/10.1126/science.1057627
  20. Park, M. H., Lee, B. M., Lee, T. H., Hur, J., and Yang, H. J. (2009). Effects of humic substances on the changes of dissolved organic matter characteristics by biodegradation, Journal of Korean Society on Water Environment, 25(3), 419-424. [Korean Literature]
  21. Pomeroy, L. R., Sheldon, J. E., Sheldon, W. M., and Peters, F. (1995). Limits to growth and respiration of bacterioplankton in the Gulf of Mexico, Marine Ecology Progress Series, 117, 259-268. https://doi.org/10.3354/meps117259
  22. Raymond, P. A. and Bauer, J. E. (2000). Bacterial consumption of DOC during transport through a temperate estuary, Aquatic Microbial Ecology, 22, 1-12. https://doi.org/10.3354/ame022001
  23. Seo, H., Kang, Y., Min, K., Lee, K., Seo, G., Kim, S., Paik, K., and Kim, S. (2010). Characteristics of distribution and decomposition of organic matters in stream water and sewage effluent, Analytical Science and Technology, 23(1), 36-44. [Korean Literature] https://doi.org/10.5806/AST.2010.23.1.036
  24. Seoung, J. and Park, J. (2012). Effects of sewage effluent on organic matters of Nakdong river: Comparison of daily loading, Korean Journal of Limnology, 45(2), 210-217. [Korean Literature]
  25. Servais, P., Barillier, A., and Garnier, J. (1995). Determination of the biodegradable fraction of dissolved and particulate organic carbon in waters, Annales de LimnologieInternational Journal of Limnology, 31(1), 75-80. https://doi.org/10.1051/limn/1995005
  26. Servais, P., Billen, G., and Hascoet, M. C. (1987). Determination of the biodegradable fraction of dissolved organic matter in waters, Water Research, 21(4), 445-450. https://doi.org/10.1016/0043-1354(87)90192-8
  27. Shin, J. W., Lee, B. M., Hur, J., and Park, J. H. (2013). Changes in the concentrations and the characteristics of organic carbon after entrance in to dam reservoirs, Journal of Korean Society on Water Environment, 29(1), 81-87. [Korean Literature]
  28. SOndergaard, M. and Middelboe, M. (1995). A cross-system analysis of labile dissolved organic carbon, Marine Ecology Progress Series, 118, 283-294. https://doi.org/10.3354/meps118283
  29. SOndergaard, M., Borch, N. H., and Riemann, B. (2000). Dynamics of biodegradable DOC produced by freshwater plankton communities, Aquatic Microbial Ecology, 23, 73-83. https://doi.org/10.3354/ame023073
  30. Thingstad, T. F., Hagstrom A. F. K., and Rassoulzadegan F. (1997). Accumulation of degradable DOC in surface waters: Is it caused by a malfunctioning microbial loop?, Limnology and Oceanography, 42(2), 398-404. https://doi.org/10.4319/lo.1997.42.2.0398
  31. Triska, F. J. and Sedell, J. R. (1976). Decomposition of four species of leaf litter in response to nitrate manipulation, Ecology, 57, 783-792. https://doi.org/10.2307/1936191
  32. Vaccaro, R. F. (1969). The response of natural microbial populations in seawater to organic enrichment, Limnology and Oceanography, 14(5), 726-735. https://doi.org/10.4319/lo.1969.14.5.0726
  33. Wright, R. T. and Hobbie, J. E. (1966). Use of glucose and acetate by bacteria and algae in aquatic ecosystems, Ecology, 47(3), 447-464. https://doi.org/10.2307/1932984
  34. Zweifel, U. L. (1999). Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga, Estuarine, Coastal and Chelf Science, 48, 357-370. https://doi.org/10.1006/ecss.1998.0428
  35. Zweifel, U. L., Norrman, B., and Hagstrom, A. (1993). Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients, Marine Ecology Progress Series, 101, 23-32. https://doi.org/10.3354/meps101023