• Title/Summary/Keyword: Normal matrices

Search Result 104, Processing Time 0.033 seconds

The Gentan Probability, A Model for the Improvement of the Normal Wood Concept and for the Forest Planning

  • Suzuki, Tasiti
    • Journal of Korean Society of Forest Science
    • /
    • v.67 no.1
    • /
    • pp.52-59
    • /
    • 1984
  • A Gentan probability q(j) is the probability that a newly planted forest will be felled at age-class j. A future change in growing stock and yield of the forests can be predicted by means of this probability. On the other hand a state of the forests is described in terms of an n-vector whose components are the areas of each age-class. This vector, called age-class vector, flows in a n-1 dimensional simplex by means of $n{\times}n$ matrices, whose components are the age-class transition probabilities derived from the Gentan probabilities. In the simplex there exists a fixed point, into which an arbitrary forest age vector sinks. Theoretically this point means a normal state of the forest. To each age-class-transition matrix there corresponds a single normal state; this means that there are infinitely many normal states of the forests.

  • PDF

A Predictive Two-Group Multinormal Classification Rule Accounting for Model Uncertainty

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.477-491
    • /
    • 1997
  • A new predictive classification rule for assigning future cases into one of two multivariate normal population (with unknown normal mixture model) is considered. The development involves calculation of posterior probability of each possible normal-mixture model via a default Bayesian test criterion, called intrinsic Bayes factor, and suggests predictive distribution for future cases to be classified that accounts for model uncertainty by weighting the effect of each model by its posterior probabiliy. In this paper, our interest is focused on constructing the classification rule that takes care of uncertainty about the types of covariance matrices (homogeneity/heterogeneity) involved in the model. For the constructed rule, a Monte Carlo simulation study demonstrates routine application and notes benefits over traditional predictive calssification rule by Geisser (1982).

  • PDF

A MULTILEVEL BLOCK INCOMPLETE CHOLESKY PRECONDITIONER FOR SOLVING NORMAL EQUATIONS IN LINEAR LEAST SQUARES PROBLEMS

  • Jun, Zhang;Tong, Xiao
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.59-80
    • /
    • 2003
  • An incomplete factorization method for preconditioning symmetric positive definite matrices is introduced to solve normal equations. The normal equations are form to solve linear least squares problems. The procedure is based on a block incomplete Cholesky factorization and a multilevel recursive strategy with an approximate Schur complement matrix formed implicitly. A diagonal perturbation strategy is implemented to enhance factorization robustness. The factors obtained are used as a preconditioner for the conjugate gradient method. Numerical experiments are used to show the robustness and efficiency of this preconditioning technique, and to compare it with two other preconditioners.

2×2 INVERTIBLE MATRICES OVER WEAKLY STABLE RINGS

  • Chen, Huanyin
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.257-269
    • /
    • 2009
  • A ring R is a weakly stable ring provided that aR + bR = R implies that there exists $y\;{\in}\;R$ such that $a\;+\;by\;{\in}\;R$ is right or left invertible. In this article, we characterize weakly stable rings by virtue of $2{\times}2$ invertible matrices over them. It is shown that a ring R is a weakly stable ring if and only if for any $A\;{\in}GL_2(R)$, there exist two invertible lower triangular L and K and an invertible upper triangular U such that A = LUK, where two of L, U and K have diagonal entries 1. Related results are also given. These extend the work of Nagarajan et al.

THE REPRESENTATION AND PERTURBATION OF THE W-WEIGHTED DRAZIN INVERSE

  • Xu, Zhaoliang;Wang, Guorong
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.113-126
    • /
    • 2007
  • Let A and E be $m{\times}n$ matrices and W an $n{\times}m$ matrix, and let $A_{d,w}$ denote the W-weighted Drazin inverse of A. In this paper, a new representation of the W-weighted Drazin inverse of A is given. Some new properties for the W-weighted Drazin inverse $A_{d,w}\;and\;B_{d,w}$ are investigated, where B=A+E. In addition, the Banach-type perturbation theorem for the W-weighted Drazin inverse of A and B are established, and the perturbation bounds for ${\parallel}B_{d,w}{\parallel}\;and\;{\parallel}B_{d,w}-A_{d,w}{\parallel}/{\parallel}A_{d,w}{\parallel}$ are also presented. When A and B are square matrices and W is identity matrix, some known results in the literature related to the Drazin inverse and the group inverse are directly reduced by the results in this paper as special cases.

Exact Elastic Element Stiffness Matrix of Thin-Walled Curved Beam (박벽 곡선보의 엄밀한 탄성요소강도행렬)

  • 김남일;윤희택;이병주;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.385-392
    • /
    • 2002
  • Derivation procedures of exact elastic element stiffness matrix of thin-walled curved beams are rigorously presented for the static analysis. An exact elastic element stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The displacement and normal stress of the section are evaluated and compared with thin-walled straight and curved beam element or results of the analysis using shell elements for the thin-walled curved beam structure in order to demonstrate the validity of this study.

  • PDF

Strongly Clean Matrices Over Power Series

  • Chen, Huanyin;Kose, Handan;Kurtulmaz, Yosum
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.387-396
    • /
    • 2016
  • An $n{\times}n$ matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let $A(x){\in}M_n(R[[x]])$. We prove, in this note, that $A(x){\in}M_n(R[[x]])$ is strongly clean if and only if $A(0){\in}M_n(R)$ is strongly clean. Strongly clean matrices over quotient rings of power series are also determined.

ON WIELANDT-MIRSKY'S CONJECTURE FOR MATRIX POLYNOMIALS

  • Le, Cong-Trinh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1273-1283
    • /
    • 2019
  • In matrix analysis, the Wielandt-Mirsky conjecture states that $$dist({\sigma}(A),{\sigma}(B)){\leq}{\parallel}A-B{\parallel}$$ for any normal matrices $A,B{\in}{\mathbb{C}}^{n{\times}n}$ and any operator norm ${\parallel}{\cdot}{\parallel}$ on $C^{n{\times}n}$. Here dist(${\sigma}(A),{\sigma}(B)$) denotes the optimal matching distance between the spectra of the matrices A and B. It was proved by A. J. Holbrook (1992) that this conjecture is false in general. However it is true for the Frobenius distance and the Frobenius norm (the Hoffman-Wielandt inequality). The main aim of this paper is to study the Hoffman-Wielandt inequality and some weaker versions of the Wielandt-Mirsky conjecture for matrix polynomials.

Basis Translation Matrix between Two Isomorphic Extension Fields via Optimal Normal Basis

  • Nogami, Yasuyuki;Namba, Ryo;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.326-334
    • /
    • 2008
  • This paper proposes a method for generating a basis translation matrix between isomorphic extension fields. To generate a basis translation matrix, we need the equality correspondence of a basis between the isomorphic extension fields. Consider an extension field $F_{p^m}$ where p is characteristic. As a brute force method, when $p^m$ is small, we can check the equality correspondence by using the minimal polynomial of a basis element; however, when $p^m$ is large, it becomes too difficult. The proposed methods are based on the fact that Type I and Type II optimal normal bases (ONBs) can be easily identified in each isomorphic extension field. The proposed methods efficiently use Type I and Type II ONBs and can generate a pair of basis translation matrices within 15 ms on Pentium 4 (3.6 GHz) when $mlog_2p$ = 160.

  • PDF

THE (R,S)-SYMMETRIC SOLUTIONS TO THE LEAST-SQUARES PROBLEM OF MATRIX EQUATION AXB = C

  • Liang, Mao-Lin;Dai, Li-Fang;Wang, San-Fu
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1061-1071
    • /
    • 2009
  • For real generalized reflexive matrices R, S, i.e., $R^T$ = R, $R^2$ = I, $S^T$ = S, $S^2$ = I, we say that real matrix X is (R,S)-symmetric, if RXS = X. In this paper, an iterative algorithm is proposed to solve the least-squares problem of matrix equation AXB = C with (R,S)-symmetric X. Furthermore, the optimal approximation solution to given matrix $X_0$ is also derived by this iterative algorithm. Finally, given numerical example and its convergent curve show that this method is feasible and efficient.

  • PDF