THE (R,S)-SYMMETRIC SOLUTIONS TO THE LEAST-SQUARES PROBLEM OF MATRIX EQUATION AXB = C

  • Liang, Mao-Lin (College of Mathematics and Statistics, Tianshui Normal University) ;
  • Dai, Li-Fang (College of Mathematics and Statistics, Tianshui Normal University) ;
  • Wang, San-Fu (College of Mathematics and Statistics, Tianshui Normal University)
  • Published : 2009.09.30

Abstract

For real generalized reflexive matrices R, S, i.e., $R^T$ = R, $R^2$ = I, $S^T$ = S, $S^2$ = I, we say that real matrix X is (R,S)-symmetric, if RXS = X. In this paper, an iterative algorithm is proposed to solve the least-squares problem of matrix equation AXB = C with (R,S)-symmetric X. Furthermore, the optimal approximation solution to given matrix $X_0$ is also derived by this iterative algorithm. Finally, given numerical example and its convergent curve show that this method is feasible and efficient.

Keywords

References

  1. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1991.
  2. F. William, Characterization and problems of (R,S)-symmetric, (R,S)-skew symmetric, and (R,S)-conjugate matrices, SIAM J. Matrix Anal. Appl. 26:3(2005), 748-757. https://doi.org/10.1137/S089547980343134X
  3. F. William, Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices, Linear Algebra Appl. 389(2004), 23-31. https://doi.org/10.1016/j.laa.2004.03.035
  4. G.H. Golub, C.F. Van Loan, Matrix Computations, John Hopkins Univ. Press. 1996.
  5. F.Z. Zhou, X.Y. Hu, L. Zhang, The solvability conditions for the inverse eigenvalue problems of centro-symmetric matrices, Linear Algebra Appl. 364(2003), 147-160. https://doi.org/10.1016/S0024-3795(02)00550-5
  6. X.Y. Peng, X.Y. Hu, L. Zhang, The reflexive and anti-reflexive solutions of the matrix equation $A^H{\times}B$ = C, J. Comput. Appl. Math. 200(2007), 749-760. https://doi.org/10.1016/j.cam.2006.01.024
  7. G.X. Huang, F. Yin, Matrix inverse problem and its optimal approximation problem for R-symmetric matrices, Appl. Math. Comput. 189(2007), 482-489. https://doi.org/10.1016/j.amc.2006.11.157
  8. H. Dai, On the symmetric solutions of linear matrix equations, Linear Algebra Appl. 131(1990), 1-7. https://doi.org/10.1016/0024-3795(90)90370-R
  9. K.E. Chu, Symmetric solutions of linear matrix equations by matrix decompositions, Linear Algebra Appl. 119(1989), 35-50. https://doi.org/10.1016/0024-3795(89)90067-0
  10. C.C. Paige, C.A. Saunders, Towards a generalized singular value decomposition, SIAM J. Numer. Anal. 18(1981), 398-405. https://doi.org/10.1137/0718026
  11. Y.X. Peng, An iterative method for the symmetric solutions and the optimal approximation solution of the linear matrix equation $A{\tiems}B$ = C. Appl. Math. Comput. 160(2005), 763-777. https://doi.org/10.1016/j.amc.2003.11.030
  12. Y.B. Deng, Z.Z. Bai, Y.H. Gao, Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations, Numer. Linear Algebra Appl. 13(2006), 801-823. https://doi.org/10.1002/nla.496
  13. G.X. Huang, F. Yin, K. Guo, The general solutions on the minimum residual problem and the matrix nearness problem for symmetric matrices or anti-symmetric matrices, Appl. Math. Comput. 194(2007), 85-91. https://doi.org/10.1016/j.amc.2007.04.041
  14. Z.Y. Peng, An iterative method for the least-squares symmetric solutions and the optimal approximation solution of the linear matrix equation $A{\tiems}B$ = C, Appl. Math. Comput. 170 (2005), 711-723. https://doi.org/10.1016/j.amc.2004.12.032
  15. Y. Lei, A.P. Liao, A minimal residual algorithm for the inconsistent matrix equation $A{\tiems}B$ = C over symmetric matrices, Appl. Math. Comput. 188(2007), 499-513. https://doi.org/10.1016/j.amc.2006.10.011
  16. Y.Y. Qiu, Z.Y. Zhang, J.F. Lu, Matrix iterative solutions to the least squares problem of $B{\tiems}A^T$ = F with some linear constraints, Appl. Math. Comput. 185:1(2007), 284-300. https://doi.org/10.1016/j.amc.2006.06.097
  17. T. Meng. Experimental design and decision support, in: Leondes(Ed.), Expert Systems the Technology of Knowledgy Managenment and Decision Making for the 21th Century, Vol 1. Academic Press, 2001.
  18. L. Zhang, Approximation on a closed convex cone and its numerical application, Hunan Ann. Math. 6(1986), 16-22 (in Chinese).
  19. A.P. Liao, Z.Z. Bai, Y. Lei, Best approximate solution of matrix equation $A{\tiems}B$+CY D = E, SIAM J. Matrx Anal. Appl. 27:3(2005), 675-688. https://doi.org/10.1137/040615791
  20. M. Baruch, Optimization procedure to correct stiffness and flexibility matrices using vibration tests, AIAA J. 16(1978), 1208-1210.