References
- R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1991.
- F. William, Characterization and problems of (R,S)-symmetric, (R,S)-skew symmetric, and (R,S)-conjugate matrices, SIAM J. Matrix Anal. Appl. 26:3(2005), 748-757. https://doi.org/10.1137/S089547980343134X
- F. William, Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices, Linear Algebra Appl. 389(2004), 23-31. https://doi.org/10.1016/j.laa.2004.03.035
- G.H. Golub, C.F. Van Loan, Matrix Computations, John Hopkins Univ. Press. 1996.
- F.Z. Zhou, X.Y. Hu, L. Zhang, The solvability conditions for the inverse eigenvalue problems of centro-symmetric matrices, Linear Algebra Appl. 364(2003), 147-160. https://doi.org/10.1016/S0024-3795(02)00550-5
-
X.Y. Peng, X.Y. Hu, L. Zhang, The reflexive and anti-reflexive solutions of the matrix equation
$A^H{\times}B$ = C, J. Comput. Appl. Math. 200(2007), 749-760. https://doi.org/10.1016/j.cam.2006.01.024 - G.X. Huang, F. Yin, Matrix inverse problem and its optimal approximation problem for R-symmetric matrices, Appl. Math. Comput. 189(2007), 482-489. https://doi.org/10.1016/j.amc.2006.11.157
- H. Dai, On the symmetric solutions of linear matrix equations, Linear Algebra Appl. 131(1990), 1-7. https://doi.org/10.1016/0024-3795(90)90370-R
- K.E. Chu, Symmetric solutions of linear matrix equations by matrix decompositions, Linear Algebra Appl. 119(1989), 35-50. https://doi.org/10.1016/0024-3795(89)90067-0
- C.C. Paige, C.A. Saunders, Towards a generalized singular value decomposition, SIAM J. Numer. Anal. 18(1981), 398-405. https://doi.org/10.1137/0718026
-
Y.X. Peng, An iterative method for the symmetric solutions and the optimal approximation solution of the linear matrix equation
$A{\tiems}B$ = C. Appl. Math. Comput. 160(2005), 763-777. https://doi.org/10.1016/j.amc.2003.11.030 - Y.B. Deng, Z.Z. Bai, Y.H. Gao, Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations, Numer. Linear Algebra Appl. 13(2006), 801-823. https://doi.org/10.1002/nla.496
- G.X. Huang, F. Yin, K. Guo, The general solutions on the minimum residual problem and the matrix nearness problem for symmetric matrices or anti-symmetric matrices, Appl. Math. Comput. 194(2007), 85-91. https://doi.org/10.1016/j.amc.2007.04.041
-
Z.Y. Peng, An iterative method for the least-squares symmetric solutions and the optimal approximation solution of the linear matrix equation
$A{\tiems}B$ = C, Appl. Math. Comput. 170 (2005), 711-723. https://doi.org/10.1016/j.amc.2004.12.032 -
Y. Lei, A.P. Liao, A minimal residual algorithm for the inconsistent matrix equation
$A{\tiems}B$ = C over symmetric matrices, Appl. Math. Comput. 188(2007), 499-513. https://doi.org/10.1016/j.amc.2006.10.011 -
Y.Y. Qiu, Z.Y. Zhang, J.F. Lu, Matrix iterative solutions to the least squares problem of
$B{\tiems}A^T$ = F with some linear constraints, Appl. Math. Comput. 185:1(2007), 284-300. https://doi.org/10.1016/j.amc.2006.06.097 - T. Meng. Experimental design and decision support, in: Leondes(Ed.), Expert Systems the Technology of Knowledgy Managenment and Decision Making for the 21th Century, Vol 1. Academic Press, 2001.
- L. Zhang, Approximation on a closed convex cone and its numerical application, Hunan Ann. Math. 6(1986), 16-22 (in Chinese).
-
A.P. Liao, Z.Z. Bai, Y. Lei, Best approximate solution of matrix equation
$A{\tiems}B$ +CY D = E, SIAM J. Matrx Anal. Appl. 27:3(2005), 675-688. https://doi.org/10.1137/040615791 - M. Baruch, Optimization procedure to correct stiffness and flexibility matrices using vibration tests, AIAA J. 16(1978), 1208-1210.