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This paper proposes a method for generating a basis 
translation matrix between isomorphic extension fields. To 
generate a basis translation matrix, we need the equality 
correspondence of a basis between the isomorphic 
extension fields. Consider an extension field Fpm where p is 
characteristic. As a brute force method, when pm is small, 
we can check the equality correspondence by using the 
minimal polynomial of a basis element; however, when pm 
is large, it becomes too difficult. The proposed methods are 
based on the fact that Type I and Type II optimal normal 
bases (ONBs) can be easily identified in each isomorphic 
extension field. The proposed methods efficiently use Type 
I and Type II ONBs and can generate a pair of basis 
translation matrices within 15 ms on Pentium 4 (3.6 GHz) 
when mlog2 p = 160. 
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I. Introduction 

The algebraic public-key cryptography based on elliptic 
curves (EC) [1], efficient and compact subgroup trace 
representations (XTR) [2], and so on are constructed over large 
finite fields. To use this cryptography in practice, fundamental 
arithmetic operations such as multiplication and division in the 
definition field must be efficiently implemented. From the 
viewpoint of software implementation, it is said that extension 
fields are superior to prime fields [3]. 

Recently, several efficient extension fields with a special 
modular polynomial have been proposed, namely, the optimal 
extension field (OEF) [4], and the all-one polynomial field 
(AOPF) [5], [6], which adopt an irreducible binomial and an 
all-one polynomial as the modular polynomials, respectively. A 
customized programming library for such an extension field is 
usually provided so as to be fully efficient. It may consist of 
multiplication, inversion, Frobenius mapping, exponentiation, 
square root calculation, and so on. However, such a library 
does not carry out every operation as quickly as possible. If we 
can exploit the advantages of some libraries by switching 
extension fields (libraries), then the application will be faster. In 
this case, it is important to translate vector representations 
between two extension fields that are isomorphic to each other. 
This paper shows such an example. 

Moreover, due to compatibility issues, the vector 
representation of the input element does not facilitate 
operations. If a more efficient representation exists and the 
translation is known, then it is possible to carry out the 
operations in the more efficient representation. 

Consider two isomorphic extension fields whose 
characteristic and extension degree are p and m, respectively. 
As a brute force method, we can obtain a basis translation 
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matrix by checking the correspondence of the minimal 
polynomial of a certain proper element when pm is small, 
where a proper element belongs to the concerned extension 
field but not to its proper subfield. On the other hand, when pm 
is large, it is difficult to obtain such a correspondence between 
the isomorphic extension fields. 

In [7], Paar outlined a brute force method to construct a basis 
translation matrix between isomorphic binary extension fields 
F2m and (2 )

ˆ k lF , where m = kl and (2 )
ˆ k lF  is a binary tower 

field. This method is based on a root finding algorithm. Let Â  
and f(x) be a primitive element of (2 )

ˆ k lF∗ and the modular 
polynomial of F2m, respectively. The root finding algorithm 
tries to determine an index u such that ˆ( ) 0.uf A =  This 
method needs to consider a primitive element of *

2 .mF When m 
is large, it is not easy to compute the index u if we do not have 
any explicit mathematical relations between Â  and a zero of 
f(x). Its time complexity is exponential. 

Sunar [8] improved Paar’s idea by using equal degree 
factorization [9] instead of the root finding algorithm. This 
method does not need to prepare any primitive elements. In 
addition, the target extension field does not need to be a tower 
field. As described in [10], Sunar’s method calculates a 
translation matrix in polynomial time as 

( )( )23.06 log log .O m m p⋅              (1) 

This method efficiently uses the fact that, over a binary 
extension field, a Frobenius mapping with respect to F2 is 
equivalent to a squaring. Therefore, it is not efficient to directly 
apply this method to an odd characteristic extension field. 

In this paper, we propose a method to obtain a basis 
translation matrix for Fpm via Type I and Type II optimal 
normal bases (ONBs). This paper only deals with the case that 
Type I or Type II ONB exists. First, it is shown that the basis 
translation matrix can be easily obtained when Type I ONB 
exists in Fpm. In this case, the following two conditions must be 
satisfied: m+1 is a prime number, and the characteristic p is a 
primitive element in Fm+1. Type I ONB consists of the conjugate 
zeros of the irreducible polynomial 1( 1) /( 1)mx x+ − −  over Fp 
and is obviously identified in each isomorphic extension field. 
This method efficiently uses the fact that the multiplicative 
order of each zero of 1( 1) /( 1)mx x+ − −  is 1+m . In section 
III, the method for generating a basis translation matrix via 
Type I ONB is shown in detail. If the above conditions are not 
satisfied, we cannot use Type I ONB.  

The worst case in which Type I ONB does not exist in Fpm 
happens when ( 1) /( 1)m ppk = − −  is a large prime number. 
In this case, the smallest order of an arbitrary proper element in 
Fpm is k. Considering zeros of ( 1) /( 1)kx x− − , there are k–1 

proper elements of the order k. In this case, the multiplicative  
order cannot play an important role in obtaining the 
correspondence between the bases of isomorphic extension 
fields. In this paper, it is shown that some such difficult cases 
can be overcome when Type II ONB exists in Fpm. In this case, 
the following conditions must be satisfied: 2m+1 is a prime 
number, and either p is a primitive element in F2m+1 or the order 
of p in F2m+1 is m and 2 | ( 1)m − . In section IV, a method for 
generating a basis translation matrix via Type II ONB is 
proposed. This method uses the fact that the multiplicative 
order of each zero of 2 1( 1) /( 1)mx x+ − −  is 2m+1. In section 
V, some examples are shown. Then, the proposed methods are 
implemented on Pentium 4 (3.60 GHz), which demonstrates 
that we can obtain a translation matrix within 15 ms, even for a 
large extension field, as 2log 32p ≅ and m=5. The previous 
methods [7], [8] are based on finding a root of the modular 
polynomial; however, the proposed method is not. 

Throughout this paper, p and m are a prime number and a 
positive integer, respectively; Fp and Fpm denote a prime field 
and its m-th extension field, respectively; and *

mpF is the 
multiplicative group in Fpm. Since this paper considers two 
bases, b and b̂  in Fpm, the representations of the same 
element A with b and b̂ are respectively distinguished with 
subscripts Ab and ˆAb . Without any additional explanation, the 
lower and upper case letters a and A show elements in the 
prime field and the extension field, respectively. Moreover, α  
denotes zeros of the modular polynomial, vT means the transpose 
vector of v, and |d m  means that m is divisible by d. 

II. Preparation 

Let us briefly go over bases in the extension field, the 
minimal polynomial, basis translation, Type I ONB, Type II 
ONB, all-one polynomial field (AOPF), and optimal extension 
field (OEF). 

1. Bases in the Extension Field 

In order to construct the arithmetic operations in Fpm, we 
need an irreducible polynomial f(x) of degree m over Fp. Let 
α  be a zero of f(x), that is a proper element1) in Fpm, then the 
following set forms a basis: 

{ }2 11, , , , ,mα α α −=b             (2) 

which is called a polynomial basis. An arbitrary element A in 
Fpm is represented as 

                                                               
1) In this paper, we call an element that belongs to Fpm but not to its proper subfield 

a proper element in Fpm. 
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1
1 2 .m

mA a a aα α −= + + +            (3) 

The vector representation of Ab is 1( , , )T
mA a a=⎡ ⎤⎣ ⎦b . A 

multiplication and inversion in Fpm are carried out using the 
relation ( ) 0f α = ; therefore, f(x) is called the modular 
polynomial of Fpm. 

According to the polynomial basis (2), the following set also 
forms a basis: 

{ }2 3, , , , ,mα α α α              (4) 

which is called pseudo-polynomial basis in this paper. 
When the following conjugates of α  are linearly 

independent: 

{ }2 1
, , , , ,

mp p paα α α
−

          (5) 

it is called a normal basis, which is efficient for Frobenius 
mapping pA A→ . Every basis introduced here consists of m 
linearly independent elements in Fpm. 

2. Minimal Polynomial 

The minimal polynomial ( )M xα of a proper element 
mpFα ∈ with respect to Fp is the monic irreducible polynomial 

of degree m over Fp such that ( ) 0Mα α = . The minimal 
polynomial ( )M xα  divides mpx x− . 

3. Basis Translation 

Let N(m) be the number of monic irreducible polynomials of 
degree m over Fp . N(m) is given by [11] as 

/

|

1( ) ( ) ,m i

i m
N m i p

m
μ= ∑              (6) 

where μ(n) is the biusoM function given as 

1 if 1,

( ) ( 1) if is the product of  distinct primes,
0 if is divisible by distinct primes.

k

n

n n k
n k

μ

=⎧
⎪

= −⎨
⎪
⎩

(7) 

The summation in (6) is carried out for each i that divides m. 
We can choose one among N(m) irreducible polynomials as the 
modular polynomial of Fpm. Extension fields Fpm with the same 
characteristic p and extension degree m are isomorphic to each 
other [11]. Therefore, when pm is large, there are many 
isomorphic extension fields Fpm because N(m) becomes large, 
as given by (6). 

In order to envisage the basis translation, let us consider a 
quite simple example of the basis translation between 

{ }1,α=b  and { }ˆ ˆ1,α=b , where α  and 23ˆ Fα ∈  are 

zeros of irreducible polynomials ( ) 2 2aM x x x= + + and 
( )âM x = 2 2 2x x+ + , respectively. To obtain a basis 

translation matrix, we need a certain representation of α  with 
b̂ , that is b̂α . Since the order of α  is 32–1=8, in other words, 
α  is a primitive element in 23F , we can considerα̂ , ˆ 2α + , 

ˆ2α , and ˆ2 1α +  in Fpm as the candidates of ˆαb . Their 
orders are also 8. Of course, ˆα α≠  because their minimal 
polynomials ( )aM x  and ( )âM x are different from each other. 
We find that α  corresponds to ˆ 2α +  or ˆ2α  because 

2
ˆ ˆ2 2( ) ( ) ( ) 2 .M x M x M x x xα α α+= = = + +      (8) 

In other words, 

.0)ˆ2()2ˆ( ==+ αα αα MM            (9) 

It is noted that ˆ 2α +  and ˆ2α  are conjugates with respect 
to F3. Thus, the basis translation matrices that translate the 

vector representation of an element 23A F∈b  to that of ˆAb  

are given as 

1 2 1 0
and

0 1 0 2
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

T            (10) 

that satisfy 

ˆ .= Tb b                  (11) 

As mentioned above, when pm is small, using this brute force 
method, we can generate a basis translation matrix between b 
and b̂ . If we can find Bb̂  such that ˆ( ) 0,aM B =b  then 
Bb̂  corresponds to .α  Then, we will obtain a basis 
translation matrix. On the other hand, when pm is large and 

)(mN  is accordingly large, it is difficult to find Bb̂  such that 
ˆ( ) 0aM B =b  among many elements in Fpm. 

Let us consider the worst case, in which it is too difficult to 
apply the brute force method in practice. For Fpm, when 

( 1) /( 1)m ppk = − −  is a large prime number, the order of an 
arbitrary proper element in Fpm is divisible by k. In other words, 
k is the smallest among the orders of proper elements. There 
are k–1 proper elements of order k in Fpm . Therefore, we 
cannot efficiently filter the candidate elements by using the 
multiplicative order k as previously discussed. 

4. Type I Optimal Normal Basis 

Let β be a zero of the irreducible all-one polynomial (AOP)2) 
1( 1) /( 1)mx x+ − −  over Fpm. Using β in Fpm, the following set 

forms a normal basis: 

                                                               
2) Since all the coefficients are 1, it is called an all-one polynomial. The irreducibility of an 

all-one polynomial can be easily checked by the conditions shown in theorem 1 [12]. 
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{ }2 1
, , , , .

mp p pβ β β β
−

           (12a) 

The normal basis (12a) is equivalent to the following 
pseudo-polynomial basis: 

{ }2 3, , , , .mβ β β β              (12b) 

Since a normal basis and pseudo-polynomial basis are 
efficient for an inversion with the Itoh-Tsujii inversion 
algorithm3) [13] and a multiplication, respectively, this basis is 
efficient for implementing fast arithmetic operations in Fpm. 
Therefore, (12a) is called a Type I ONB. Of course this is 
equivalent to (12b) [5]. 

Theorem 1. Type I ONB exists in Fpm if and only if the 
following conditions are satisfied [14]: 

<1.1> m+1 is a prime number,  
<1.2> p is a primitive element in Fm+1. 

According to the above theorem, Type I ONB exists in Fpm 
only when m is even and larger than 1. It should be noted that 
the m zeros of the AOP of degree m have the same order m+1. 
Conversely, there are m elements of order m+1 in Fpm since 
m+1 is a prime number. Therefore, we have the following 
lemma. 

Lemma 1. When the conditions in theorem 1 are satisfied, m 
elements of order m+1, zeros of the AOP of degree m, form 
Type I ONB in Fpm. 

According to lemma 1, if the order of an element γ is m+1, 
then the set { }2, , , mγ γ γ  forms Type I ONB. In other 
words, we can distinguish Type I ONB in Fpm by detecting the 
generator γ among all elements in Fpm. 

5. Type II Optimal Normal Basis 

The following theorem shows the conditions for Type II 
ONB. 

 
Theorem 2. Type II ONB exists in Fpm if and only if the 

following <2.1> and either <2.2a> or <2.2b> are satisfied [14]: 
<2.1> 2m+1 is a prime number, 
<2. 2a> p is a primitive element in F2m+1, 
<2. 2b> 12 | ( )m − and the order of p in F2m+1 is m. 

Let β be a zero of 2 1( 1) /( 1)mx x+ − − . Since β satisfies 
2 1 1mβ + = , the set (13a) is equivalent to the set (13b) in 

sequence. 

                                                               
3) For this inversion algorithm, Frobenius mapping should be efficiently carried out. 

{ }2 1 2 1 2, , , , , , , ,m m m mβ β β β β β+ −        (13a) 

{ }2 2 1, , , , , , , .m mβ β β β β β− − −         (13b) 

If m and p satisfy the conditions shown in theorem 2, let iτ  
be i iβ β −+  and the set (14) forms a basis in Fpm: 

{ }1 2 3, , , .mτ τ τ τ               (14a) 

The set (14a) is equal to 

{ }2 1

1 1 1 1, , , .
mp p pτ τ τ τ

−
           (14b) 

The basis (14b) is called Type II ONB. Type II ONB does 
not require the extension degree m to be even. If m and p 
satisfy the conditions <2.1> and <2.2a> in theorem 2, the set 
(13a) forms a pseudo-polynomial basis in Fp2m, that is, Type I 
ONB. Then, iτ  is the trace of β i with respect to Fpm, that is, a 
subfield of Fp2m. On the other hand, if m and p satisfy <2.1> 
and <2.2b>, Type I ONB does not exist in Fp2m. Both β i and 

iτ  are proper elements in Fpm. Therefore, we have the 
following lemma. 

Lemma 2.  When the conditions in theorem 2 are satisfied, 
2m elements of order 2m+1 are zeros of the AOP of degree 2m, 
and they are (13a). Type II ONB in Fpm is derived from the 2m 
elements (13a). 

Therefore, we can distinguish Type II ONB in Fpm by 
detecting an element β of order 2m+1 among elements in Fp2m 
or Fpm. 

6. All-One Polynomial Field 

We have proposed Type I and Type II AOPFs in previous 
works [5], [6]. Type I and Type II AOPFs adopt Type I and 
Type II ONBs, respectively. In both AOPFs, a cyclic vector 
multiplication algorithm (CVMA) is used to quickly carry out 
multiplication. Of course, in order to prepare Type I and Type II 
AOPFs, theorems 1 and 2 must be satisfied, respectively. 

7. Optimal Extension Field 

Bailey and others proposed an extension field called an 
optimal extension field (OEF) [4]. The OEF adopts an 
irreducible binomial f(x)=xm–c as the modular polynomial and 
is constructed based on theorem 3. 

Theorem 3. If the following two conditions are satisfied, 
irreducible binomials xm–c exist over Fq [11]: 

<3.1> Each prime factor of m divides q–1, 
<3.2> 1q ≡  mod 4 when 0m ≡  mod 4. 
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Table 1. Comparison of OEF with Type I and Type II AOPFs. 

 
Modular 

polynomial 
Basis Condition

Type I AOPF 
Fpm 

All one 
polynomial 

(xm+1-1)/(x-1) 

Type I ONB 
},,,,{

12 −mppp ββββ  
},,,,{ 32 mββββ=  

Thm.1 

Type II AOPF 
Fpm 

All one 
polynomial 

(x2m+1-1)/(x-1) 

Type I ONB 
},,,,{

12

1111
−mppp ττττ  
},,,,{ 321 mττττ=

ii
i

−+= ββτ  

Thm.2 

OEF Fqm 
Irreducible 
binomial 

xm-c ,  c ∈ Fq 

Polynomial basis 
2 1{1, , , , }mα α α −  

Thm.3 

 
∗α and β are zeros of modular polynomials, respectively. q is a power of the
characteristic p. 

  
To explain our proposed method easily, we consider two 

isomorphic OEFs in section 5 because we can easily construct 
OEFs and examine the obtained basis translation matrix. In this 
paper, we mainly deal with an odd prime number as the 
characteristic p; therefore, pm–1 is divisible by 2. Accordingly, 
we can construct OEF Fp2m with a certain modular polynomial 
x2– λ over Fpm, where λ is a quadratic non residue in Fpm. In 
what follows, the method that constructs Fp2m over Fpm by 
using an irreducible binomial as the modular polynomial is 
referred to as OEF extension. 

III. Basis Translation via Type I ONB 

Let characteristic p and extension degree m satisfy the 
conditions of theorem 1. In this case, Type I ONB exists in Fpm. 
Let us consider a basis translation between two different bases 
b and b̂  via Type I ONB. According to theorem 1 and lemma 
1, there are m proper elements whose order is m +1 in Fpm. 

Let Bb be a non-zero element in Fpm. Noting that m + 1 is a 
prime number, if Bb satisfies 

( 1) /( 1) 1,
mp mB − + ≠b               (15) 

the order of ( 1) /( 1)mp mB − +
b is m +1 as follows: 

( ) 1
( 1) /( 1) 1 1.

m mm
p m pB B

+
− + −= =b b

        (16) 

Thus, lemma 1 ensures that ( 1) /( 1)mp mB − +
b is a generator of 

Type I ONB, that is 

( 1) /( 1) .
mp mBβ − +=b b               (17) 

The probability that a non-zero element satisfies (15) is 

 

  

Fig. 1. Algorithm for generating a matrix M that represent the 
Type I ONB with b. 

Input:
Output:

A basis b and modular polynomial )(xf of degree m 
A matrix M = [bij] that represent the Type I ONB with 
b. 

1.

2.

3.
4.
5.
6.
7.
8.
9.

10.

Let Bb∈ Fpm be a random no-zero element. 

←
( -1)/( +1)m

b
p mB Bb , if Bb =1 then, go to 1.  

Cb←Bb. 
for i←1 to m do 

j←1. 
for j←1 to m do 

bji←bj. 
end for 
Bb ←BbCb. 

end for 

 
 
almost )1/( +mm . Thus, we can easily determine such an 
element as bB  in Fpm. Then, using (17), we have the 
representation of Type I ONB with b , 

{ }2 1, , , , ,mmβ β β β− = Mb b b b b           (18) 

where 

2

.

T

m

β

β

β

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟
⎜ ⎟⎡ ⎤⎣ ⎦= ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎡ ⎤⎣ ⎦⎝ ⎠

M

b

b

b

                 (19) 

As described in section II.3, an element in Fpm is 
characterized by its order and its minimal polynomial. On the 
other hand, as shown in lemma 1, we can identify Type I ONB 
as the set of m elements of order m+1 in Fpm. Figure 1 shows 
the algorithm for generating the matrix M. In Fig. 1, the 
coefficients of vector and matrix are denoted by lower-case 
letters with subscripts such as ][,][][ iji bbB == Mb . 

In the same way, we can obtain the matrix M̂  for b̂ such that 

{ }2 1
ˆ ˆ ˆ ˆ

ˆ ˆ, , , , .Mmmβ β β β− =b b b b b         (20) 

Therefore, we have 

{ }2 ˆ ˆ, , , mβ β β= =M Mb b .         (21) 

Thus, the matrices 1ˆ −= MMT and 11 ˆ −− = MMT are the 
basis translation matrices between b and b̂ . 

1

1 1

ˆ
ˆ

ˆ .

T MM

T MM

−

− −

=⎯⎯⎯⎯⎯⎯→←⎯⎯⎯⎯⎯⎯
=

b b               (22) 

Using T and T-1, a basis translation requires m2 Fp-multiplications. 
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As shown above, if the conditions of theorem 1 are satisfied, 
Type I ONB exists in Fpm. Accordingly, we can obviously 
identify the basis elements from lemma 1. Otherwise, we 
cannot use Type I ONB. Moreover, in the worst case described 
in section II.3, it is too difficult to identify a certain proper 
element only from the multiplicative order of element. Of 
course, as shown in section II.3, it is too difficult to check the 
minimal polynomial correspondence between isomorphic 
extension fields. In the next section, it is shown that some such 
difficult cases are overcome by using Type II ONB. 

IV. Basis Translation via Type II ONB 

To generate basis translation matrices T  and T-1 between b 
and b̂  via Type II ONB in Fpm, consider a zero β of  

2 1( 1) /( 1)mx x+ − − . In this section, suppose the conditions in 
theorem 2 are satisfied and let e be 

2 1
if < 2.2a > is satisfied,2 1

1 if < 2.2b > is satisfied.
2 1

m

m

p
m

e
p
m

−⎧
⎪ +⎪= ⎨
⎪ −
⎪⎩ +

    (23) 

As shown in theorem 2, when the condition <2.2b> is satisfied, 
β  is a proper element in Fpm , and 12 +m  divides pm–1. Let 

mpB F∈b  satisfy 

1 .eB ≠b                    (24) 

Then, we consider the following elements as in the part of 
section III after lemma 2: 

{ }( 1) (2 1) 2, , , , , , .m e m ee me meB B B B B+ −
b b bb b     (25a) 

These elements are equivalent to the following elements in 
sequence: 

{ }2 2, , , , , , , .e e me me e eB B B B B B− − −
b b b b b b      (25b) 

For 1τ  defined in section II.5, lemma 2 ensures that  

1 .eB Bτ −= +eb b b                 (26) 

Figure 2(b) show the correspondence between 1bτ  and 
e eB B−+b b . Since Bb is a proper element in Fpm, we obtain the 

following Type II ONB generator 1bτ  in Fpm using (26). 
Therefore, a matrix M is given as 

{ }1 2, , , ,mτ τ τ = Mb b b b            (27) 

 

Fig. 2. Basis translation with Type II ONB. 

(a) Case of <2.2a>  (b) Case of <2.2b>

eB−

pF

eB

1
e eB B τ−+ ⇒ b

2mpF

mpF

2 1
2 1

mpe
m

−
=

+

1
2 1

mpe
m

−
=

+mpF
e

bB−
e
bB

1
e eB B τ−+ ⇒b b b

pF

 
 
where 

1

2 .

T

m

τ
τ

τ

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟
⎡ ⎤⎜ ⎟⎣ ⎦= ⎜ ⎟

⎜ ⎟⎜ ⎟⎡ ⎤⎣ ⎦⎝ ⎠

M

b

b

b

               (28) 

On the other hand, in the case that <2.2a> is satisfied, β =Be is a 
proper element in Fp2m as shown in Fig. 2. Therefore, we need 
to construct extension field Fp2m in order to prepare the set 
(25a). For the preparation, the second extension field Fp2m is 
constructed over Fpm by OEF extension. We adopt the OEF 
procedure for the second extension for two reasons. First, it is 
easy to get the modular binomial of degree 2. Secondly, it is 
always possible to construct the second extension field Fp2m 
when pm–1 is divisible by 2. 

Let the modular binomial be 2x λ− , where λ is a quadratic 
non-residue in Fpm such that ( 1) / 2 1

mpλ − ≠ . Then, the square 
root λ  belongs to Fp2m as a proper element. In the OEF 
procedure, a multiplication over Fp2m is carried out by three 
multiplications and four additions over Fpm with the Karatsuba 
method [4]. Moreover, since 1τ b  is the trace of Be with 
respect to Fpm, 1τ b  is obtained as follows: 

1 2 1 2, , ,me
pB b b b b Fλ= + ∈b b b b       (29a) 

1 2 .eB b b λ− = −b b               (29b) 

Therefore, we can write 

1 12 .e eB B b τ−+ = =b b               (30) 

Thus, we obtain the set (25a) in Fp2m. Then, 1τ b  is determined 
from (30). Then, the basis translation matrix is given as in (27) 
and (28). 

V. Examples 

1. Example of Basis Translation 

Let us consider an easy example of a basis translation  
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between two bases b and b̂  in F134. Consider the following 
Type I ONB in F134 as 

{ } { }3 22 3 4 13 13 13, , , , , , ,β β β β β β β β=       (31) 

where β is a zero of the modular polynomial of AOPF of 
degree 4. Thus its order is equal to 51 =+m . Let us consider 
a polynomial basis 2 3{1, , , }α α α=b  given by α . Let its 
minimal polynomial be 4( ) 2M x xα = − . Since α  satisfies 

4 2α = , the order of α is 48 as 48 122 1α = = . In this case, we 
have 

.57125/)113()1/()1( 4 =−=+−= mpe m        (32) 

Of course, α  does not satisfy (15) because 48 divides 
5,712 and α+1  satisfies (15). Therefore, we have the 
following four linearly independent relations: 

{ }
{ }
{ }

,

1

)1(
)1(
)1(
)1(

3

2

45712

35712

25712

5712

4

3

2

M

TTT

b

b

b

b

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
+
+
+

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

α
α
α

α
α
α
α

β
β
β
β

      (33) 

where M and M -1 are given by 

,

51128
9449
210311
3333

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=M               (34a) 

.

24512
109112
391212

114812

1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=−M               (34b) 

In the same way, let us consider another polynomial basis 
2 3ˆ ˆ ˆ ˆ{1, , , }α α α=b  given by α̂ . Let its minimal polynomial be 

6)( 4
ˆ −= xxMα . We can calculate the matrix M̂  and its 

inverse matrix 1ˆ −M  as 

{ }
{ }
{ }

5712

ˆ
257122

ˆ
3 23 5712

ˆ
34 45712ˆ

ˆ(1 )
1

ˆ(1 ) ˆ
ˆ ,

ˆˆ(1 )
ˆ

ˆ(1 )

T
T

T
αβ

αβ α

αβ α
αβ α

⎛ ⎞+
⎛ ⎞ ⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎝ ⎠ ⎜ ⎟+⎝ ⎠

M

b

b

b

b

       (35) 

3 3 3 3
5 12 1 8ˆ ,
1 12 12 1
5 1 12 8

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

M              (36a) 

1

12 2 10 2
12 3 3 10ˆ .
12 10 3 3
12 11 10 11

−

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

M             (36b) 

Therefore, we have 

1 1

1 0 0 0
0 4 0 0ˆ ,
0 0 3 0
0 0 0 12

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎝ ⎠

T MM          (37a) 

1

1 0 0 0
0 10 0 0ˆ .
0 0 9 0
0 0 0 12

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎝ ⎠

T MM          (37b) 

By the way, 5712ˆ(2 )α+  also satisfies the condition (15). 
When we adopt α̂2 +  instead of α̂1+ , we have another 
pair of basis translation matrices. 

For the above modular polynomials ( )aM x  and ( )ˆM xα , 
we find the following relations: 

4 4
ˆ(4 ) (4 ) 2 9( 6) 9 ( ),M x x x M xα α= − = − =     (38a) 

4 4
ˆ(7 ) (7 ) 2 9( 6) 9 ( ).M x x x M xα α= − = − =     (38b) 

Therefore, we can easily find the correspondence:  

ˆ ˆ4 or 7 .α α α α= =                (39) 

This relation can be also deduced from the matrices (37a) 
and (37b) because (37) have non-zero elements only in the 
main diagonal. If f(x) and ˆ ( )f x  are not binomials, it is not 
easy to find such a relation. For example, when the polynomial 
bases 2 3{1, , , }α α α=b  and 2 3ˆ ˆ ˆ ˆ{1, , , }α α α=b  are given 
by ( )xM a = x4 + 9x3 + 11x2 + 10x + 12 and ( )xM α̂ = x4 + x3 + 
7x2 + 7x + 6, respectively, the basis translation matrices 
between b and b̂  become 

1 1

1 2 2 3
0 0 2 3ˆ ,
0 2 5 2
0 4 12 3

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎝ ⎠

T MM           (40a) 

1

1 5 6 3
0 10 10 5ˆ .
0 5 9 2
0 10 7 3

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎝ ⎠

T MM          (40b) 
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2. Example of Efficiency 

In this section, using the following parameters p and m, we 
consider Fpm with Type II OEF and Type II AOPF and 
demonstrate the efficiency of the basis translation. 

.
/p

bit)-(160267047318304597229
087551789158014011057722484433=     (41a) 

.9=m                  (41b) 

We consider Type II OEF and Type II AOPF because, as 
shown in Table 2, Type II OEF carries out multiplication and 
squaring faster and Type II AOPF carries out Frobenius 
mapping faster. The authors simulated an exponentiation with 
the well–known binary method and Avanzi’s recent work, 
Frobenius–abusing exponentiation [15]. 

The binary method and Frobenius–abusing exponentiation 
respectively need the following calculation costs, 

{ } ,)1log(2/)log( SpmMpm −+             (42a) 

{ } { }1 ( log ) / 2 (log 1) ( 1) log ,m p M p S m p ϕ+ + − + − (42b) 

where M, S, and ϕ  denote the calculation costs of 
multiplication, squaring, and Frobenius mapping in Fpm, 
respectively. The simulation results tabulated in Table 2 almost 
follow the above cost evaluation. According to the simulation 
results, since the back and forth translations need 35.0 μs only, 
the efficiencies of both Type II OEF and Type II AOPF can be 
fully used by the basis translation. Specifically, we mainly use 
Type II OEF, and for an exponentiation with Frobenius-
abusing exponentiation, we can apply Type II AOPF by the 
basis translation. 
 

Table 2. Calculation times of arithmetic operations with Type II OEF
and APOF.                               (μs)

 Type II OEF Type II AOPF 

Multiplication 26.7 29.0 

Squaring 20.4 22.4 

Frobenius mapping 5.02 0.80 

Binary method 5.06×104 5.30×104 

Frobenius-abusing 
exponentiation [15] 3.07×104 2.63×104 

Proposed method 3.69×105 

Sunar’s method 6.8×106 

Basis translation×2 35.0 

 Simulated on Pentium 4, 3.6 GHz, NTL [16]  

 

 

Fig. 3. Computation time to generate a pair of translation matrices 
M and M-1 for log p ≅ 32. 
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VI. Simulation 

The proposed methods with Type I ONB and Type II ONB 
(<2.2b>, <2.2a>) were implemented on Pentium 4 (3.60 GHz) 
with NTL [16] over C++ programming language. Figure 3 
shows the experimental results. The graph shows the average 
computation time per 100 times generating a pair of two 
matrices such as M and M-1, where M is introduced in section 
III. The characteristic p and modular polynomial ( )xM a  
were randomly selected such that 32log2 ≅p . 

The exponentiation in (15) and (24) are major computations 
in the proposed methods. In general, a multiplication in Fpm 
requires m1.58 multiplications over Fp with Karatsuba method 
and the exponentiation by the well-known binary method 
requires about pm 2log  multiplications over Fpm. Thus, the 
proposed methods need ( )pmO 2

58.2 log  Fp-multiplications. 
The exponentiation (24) in the case of Type II <2.2a> is 

about six times slower than that of Type I and Type II <2.2b> 
since we need to prepare Fp2m over Fpm. This is because the 
number of multiplications for the exponentiation in (24) 
becomes about double because log2p2m=2mlog2p. In addition, a 
multiplication over the extension field Fp2m is carried out by 
three multiplications over Fpm with the OEF technique. 
Consequently, the calculation cost becomes about six times 
larger. 

The basis translation with Type II ONB also overcomes 
some of the worst cases in which we cannot use Type I ONB 
and )1/()1( −− ppm  becomes a large prime number. For 
example, when 3856381327=p and 5=m , )1/()1( −−= ppk m  
becomes a large prime number such that 160log2 ≅k , using 
Type II ONB, we can generate a pair of basis translation 
matrices within 15 ms. Thus, the proposed method generates 
translation matrices systematically without checking the 
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minimal polynomial. 

VII. Conclusion 

In this paper, we proposed a method to obtain a basis 
translation matrix with Type I and Type II ONBs. The 
proposed methods were based on the fact that a zero of the all-
one polynomial can be identified in each isomorphic extension 
field with its order. First, a method for generating a basis 
translation matrix with Type I ONB was shown. Then, for the 
case that we could not use Type I ONB, a method for 
generating a basis translation matrix with Type II ONB was 
shown. From experimental results, it was shown that the 
proposed methods could generate a pair of basis translation 
matrices within 15 ms on Pentium 4 (3.60 GHz) when 

2log 160m p ≅ . This paper discussed only Type I and II ONBs; 
however, the proposed method can be extended for an arbitrary 
pair of the characteristic and extension degree with the Gauss 
period normal bases. 
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