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1. The normal wood

The practice of forestry consists in the alter-
native iteration of felling and planting in a forest.
During these practices the forest product is yielded.
The amount of the yield must annually keep a
fixed level for many reasons. On the one hand the
forest product as material is indispensable for the
human living, on the other hand forest in itself is
important for the human society. Hence the forest
must be maintained lastingly. As a standard method
to realize both purposes simultaneously, it has been
assumed hitherto, that the total forest F ha must
be divided into age-classes having equal area F/u
ha, that the same age class area must get to the
felling age every year, and that the forest must
supply a constant produce annually, The forest,
which will endure lastingly and will be able to sup-
ply a constant wood produce as stated above, is
called “normal wood” and has been accepted as
a foundamental concept in the forest manage-

ment,

2. Criticism to the normal wood concept

If we consider the sustention of the wood pro-
duction, the normal wood concept is always in-
evitable. The principle of the sustention and the
normal wood concept can be considered as syn-
onym in this case. Similar principles or concepts
were adapted by a lot of foresters and were practi-
cally realized. Therefore it is somewhat question-
able, whether we can consider this pinciple as
“Hundeshagen thought”. All the thoughts are
always ambiguously felt by many peoples. But an

ordinary person cannot express it clearly. A man
appears and penetrates the essence of the matter
and declares his finding distinctly. He is a genius
and his finding is competent to be called his
“thought”.

In this sense the “Hundeshagen’s normal wood”
was obviously a splendid “his thought” and it
remains even now as the one and only principle of
the forest management. It is believed by every
forester, that the sustention of wood production
can be guaranteed and confirmed only by the
normal wood strategy, and that the main problem
of the forest management, therefore, is to direct
the real wood into its “normal state”.

The forest management became entangled in the
process of transfering a real wood into normal.
Though the theoreticians clinged to the “normal
wood” as a fixed notion, realities of the manage-
ment often contradicted this principle., Usually
forest owners neglected the normal wood principle
at the decision of their forest felling. In order to
form the normal state they must now and then
either cut their younger forest earlier or leave their
older forest later than the circulation period. On
both occasions they always rejected the principle
and did not act against their own interests.

Ch. Wagner (Prof. of forest management, Frei-
burg University) once made an expression of his
criticism on the “strictly normal wood concept”.

“Wir diirfen daher diese Form nicht, wie es in
der Forsteinrichtung und in der ganzen Forst-
wissenschaft und Forstwirstchaft leider iblich

geworden ist, als ‘““Normalzustand” bezeichnen.
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Es ist vielmehr der ‘‘Idealzustand”. Dagegen wollen
wir hier als *““Normalzustand” denjenigen bezeichnen,
der uns alles erreichen 168t, was wir wirtschaftlich
brauchen und daher anstreben....”

In the above Wagner points out that ‘“normal
wood” is not so much ideal as illusory, and that
there is no possibility of its realization in the least.
From his point of view it is able to compare
normal wood to a reversible engine with 100%
efficiency, which contradicts the second law of
thermodynamics and therefore has no possibility
of its realization.

The Wagner’s criticisim on the “normal wood
concept” was circulated by his famous textbook
“Lehrbuch der theoretischen Forsteinrichtung”
(1928). For all that Wagner, who himself denied
Hundeshagen, could not propose any counterpart
nor set it against the normal wood. In place of
“normal wood” there has been no idea till today,
which has played the part of an indicator in the
forest management,

Baader wrote on this theme in 1933, “Nachhalt
und Normalwald sind zwei Begriffe, die sich gegen-
seitig bedingen. Ohne die Nachbalts idee ist die
Normalwaldvorstellung underkbar, und ohne die
letztere ist die Nachhalts Forderung vergleichbar
einem Schiffe, das ohne Kompaf8 und Steuer auf
der See tribt....”

In this famous article Baader wanted to point out
an unsolvable contradiction. The sustention of
wood and wood production is indispensable for
forestry. On the other hand a forest cannot be
sustained without the normal wood, However
Wagner denied the normal wood as unrealizable.
Therefore the classical forest management must be
dead locked on the contradication. Conversely that
accounts for the fact that Hundeshagen’s normal
wood is the one and only conceptual model in the

forest management.

3. The Gentan-probability
At first direct our attention to a fixed stand

with finite life span. Forests are changing their
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appearence ceaselessly in the course of years,
Younger forests grow older while older forests
are felled and replaced by new generations. There-
fore when we observe the varied state of forests,
we must be concerned with repeated trials. When it
is cut, it is replaced almost immediately by a new
stand, which in due time is replaced by a third
stand, and so on. We assume that the stand life
span is a discrete random variable which ranges
only over multiples of an unit time, for example
a year or a decade. In the following we regard the
time unit as a decade and call it period. The corre-
sponding age-class contains a decade too. We assume
that it occurs a trial with a possible outcome ‘‘fel-
ling” or “‘survival”. The renewal process in an
individual stand causes the transformation of the
forest age distribution and consequently gives
variety to the appearence of the forest. These
repetative processes may be treated as a recurrent
event as follows:

Now define a probability g(j) that a newly plant-
ed stand will survive till j years age-class and be cut
in the same years age-class. We call g(j) “Gentan
probability”. *“‘Gentan’ in Japanese means the
diminution of a planted area. From the definition
of g(j) is derived a probability r{j), that the newly
planted stand will survive beyond j years age class,

as

(j) = 1-q(1)—q(2) — ... — q(-1)
=q(j) + q(G+1) + q(i+2) + ...

Then define a probability q(j,k), that a stand,
which is already j years age-class at the referring
time, will survive k years further and will be cut at
the j+k years age. From the definitions of the above

probabilities follows:
q(3,k) = q(+k)/r(j)

Let us suppose an initial forest age distribution
ay, 42, ..., where a is a forest area at the k age-
class. By the very definition of the probabilities
q(j) and q(j,k), the estimation of the felling area

tabulates as follows:
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us
uy uq(l)
uy uya(l) u;q(2)
2, apq(1,1) a;q(1,2) a;q(1,3)
Q 3, q(2,1) 32 q(2,2) a;q(2,3)
a, amq(m,l) amq(m,2) amq(m,3)

The first column represents the initial forest age
distribution, the second column the estimated
felling area from each age-class of the first period,
and the third that of the second period and so on.
The term un,
and figures out a sum of all the terms of the column,

which perches on the n+ith column

is no more than the regenerated area at the period n.
From the above table the estimation of the forest

age distributions are obtained as follows:

Uz
uy u; (1-q(1))
a;  a(1-q(1,1) a; (1-q(1,1)-q(1,2))
a;  ap(1-a(2,1)) a;(1-q(2,1)-a(2,2))

a, a,(1-a(2,1) a_(1-q(n,1)-q(n,2))

It is easy to know how to tabulate this table.
And it is also self-evident, that each column repre-
sents a forest age destribution at the corresponding
period.

If we multiply each growing stock per hectar by
a corresponding forest area in the table, we obtain
instantly the total harvest and the total stock of the
respective period. Of course, the yield table is

needed for this purpose.

4. The age class vector

Let us suppose for example a 30 years old stand
covering 10 ha. Usually it will be 40 years old after
a lapse of 10 years, but a part of the stand may be
cut according to circumstances. For the sake of
simplicity let us assume, that 3 ha of the stand are
cut during the decade and are replanted immediate-
ly in the same period. On the same way let us assume
again, that 5 ha of the survived 40 years age stand
will be cut for the next period. Thus the stand will

have an entirely different age distribution from that

o

of the beginning.

Therefore it is possible to discribe the state
corresponding to each of the above mentioned stand
by the following arrangements of ordered tuples
:10,0,18,0,0,...,(3,0,0,7,0,...)and {5, 3,0, 0, 2,
0,...). On the other hand an ordered tuple of num-
bers is mathematicaily a vector itself. Therefore the
phenomena of the forest age transition can be
described by means of vectors, whose components
are the area of cach age-class.

Assuming a sutficiently large n, the upper bound
of the age-class can be restricted practically lower
than the prescribed n. And if the number of the
components is finite, the vector is n-dimentional,
that is n-vector. In the following we call such a
n-vector (a,, dz,....,3,) an age-class vector. Owing to
the lapse of time the age-class vector a = (ay, a,, ...,
an) will be transformed into another age-class vector
a = (a; " ai',....,an') in the next period.

In ordinary circumstances an j years age-class
stand at present will pass over into the j+1 years
age-class in one period. Some of its portion will be
felled as the case may be. As the felling area is in
practice replanted immediately after felling, it is
treated as to transit from the j years to the 1 years
age-class. Let us in general assign a symbol p(j,k)
to the probability, that an j years age-class stand
passes over into an k years age-class, and call it age-
class transition probability from j to k.

Since the probability p(j,k) is interpreted as an
areal ratio of the transferred stand to the original,
we immediately obtain the area ay of the k years

age-class in the next period as,

ap = a;p(1,k) + a; p(2,k) + ... + 2, p(n k)
k=1,2,..n Q)

Accordingly it will be more appropriate to intro-
duce a n X n matrix P, whose components are the

probabilities p(j k)

P=(pGk), J,k=12,...n

"y
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By using the definition of the matrix multiplica-
tion we may now write the linear transformation (1)

in the simpler form
a' =aP, 2

where a = (aj) and a’' = (a'j) are age-class row
vectors at the present and in the following period,
respectively. Let us call P an ‘‘age-class-transition
matrix”. The matrix P is a kind of stochastic matrix
and controls the process of the forest age transition.
In other words the forest age transition can be

regarded as a simple Markov chains,

5. Age-class space
Let ¢; = (1, 0,...,0), e; = (0, 1,..,0),...e

0,..,1) be a basis of an n-dimensional vector space R.

= (0,

Then an arbitrary vector a = (a;, a, ,...,an) in the

space has an unique expression
a=aje tage; o tae, 3)

For the age-class vectors the sum of its all com-

ponents remains constant, that is
ay tay t..ta =a 4)

where a is the total area of the forest. Being all

components a;, a,,...,a, non-negative and smaller

n
than a, the age-class vector a is restricted to flow
only in an n-1 dimensional simplex. From now on
let us call this simplex ‘‘age-class space A”.

The transformation defined by the age-class-
transition matrix P is continuous. If we introduce a

kind of norm *a* for the vector a such that
||al|=|a,|+la2|+...+lan| (5)
then there holds an equality
fa' i=1%al (6)

This equality represents the fact that the total
area of the forest is invariable throughout all the
periods. Therefore sufficiently close two age-class
vectors a; and a, correspond to age-class vectors

a, and a:' apart as close as before.

19844 124 55

As is well known the Brouwer’s fixed point
theorem is one of the most important in topology.
The theorem states; “The continuous mapping of
a closed simplex into itself has at least a fixed
point”. Applying this to our case, it follows that
there exists at least a fixed vector ag in the age-

class space, such that

2P =ag (7)

The vector a; is an eigenvector of the matrix P
corresponding to an eigenvalue one. The equation
(7) shows that the vector ap will remain unchanged
everlastingly, so we will be able to regard this as a
normal age-class distribution. It is easily shown that
the vector a, satisfying (7) is unique for each

transition matrix P.

6. The generalized normal wood
Through a lapse of time the age-class-transition
matrix P in reality may undergo a change in greater
or less, but for simplicity we assume its uniformity
in the following.
Under this assumption an initial age-class-vector a
will be transformed into another vector a; after 1

periods, which is written as
a; =aP! €))

where p! is a ith power of the matrix P. If a sequ-
ence of the matrices P! converges to a fixed matrix
as 1 tends to an infinity, we call such a matrix P
stable. By taking limit both the sides of (8) it is
immediately obtained that for such a stable matrix
P there exists a vector a®° such that
aw=}im at =alli1:1P’ 9)
A sufficient condition for the stability of an age-
class-transition matrix P is that the set of numbers
k. such that P(ki)(1,1) = 0 is mutually prime, where
P ki)(l,]) is the probability that the first age-class
stand will recur to the original class after ki periods.
Since the limiting vector a, is a fixed point of the
matrix P and there is no fixed point other than ag as

above mentioned, we conclude that
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2 = 20 (10)

The uitimate forest state thus obtained has its own
fixed age distribution and constancy of the wood
productivity. Consequently the newly obtained
state deserves to be called as a generalized normal
state, though it is seemingly different from the old
one. While the latter was criticized as unrealizable,
the former will be realized spontaneously with the
tapse of time. To each matrix there corresponds one
normal wood, and to infinitely many matrices

there exist infinitely many normal woods.

An age-class vector a moves along the
flow line in the n-1 dimensional age-class
space and sinks into the limiting normal
Vector a,.

The limiting vector a,, can be always accessible
from an arbitrary vector in the age-class space.
Therefore we can imagine a flow of the age-class
vector, which pours into the vector a_, as a sink. But
the conclusion may seem contradictory. It seems
illogical that the vector a,, =a lim P! remains fixed
for any vector a, while the limiting matrix lim P' is
constant. This pretended contradiction is explained
by means of the Gnedenko’s Theorem. This the-
orem states that an infinite power of an arbitrary
age-class-transition matrix P is convergent, such

that

P1 P2 .. Py
pee = lim p! =(p1 P2 ... pn), py+py totpy =l
Py P2 ... Py (11)

#® o

Accordingly for an arbitrary initial age-class
vector a holds

P1 P2 ... Py
B0 = i =
atim P’ =(ay, 3, ag) (P1 P2 By )
P1 P2 .. Py
=(ap1, apz, ..., ap) (12)

where a; + a, +...+ a, = a is the total forest area.
This shows that the above conclusion is not contra-

dictory despite of the superficial skepticism.

7. Another proof of the forest transition
stability by means of the Gentan-probabi-

lity q(j)
By using the Gentan-probability the similar con-
clusion can be deduced. This method is founded
upon the fact that a replanted area in the kth

period u, is represented by a difference equation
we =y a(1) +uy 5q(2) +.+u;qlk-1) + b (13)
where
by =a;q(1,k) + a3 q(2 k) +....+ a a(nk) (14)

The equation (13) derived directly from the tables
aforementioned is a discretization of an integral
equation of the convolution type, which is the same
equation obtained and defined as “renewal equa-
tion” by Feller.

By considering the generating functions of the

series Uy, q(k) and bk’ it is concluded that
uy > afu (15)

as k tends to the infinity, where a is the total forest
area and u = Xj.q(j) is its average felling age. The
relation (15) shows that the felling area in each
period becomes constant after a long lapse of time.

As the result of this the age-class distribution of
the forest becomes similar to a curve, which declines
with steps 1, 1-q(1) = py, 1-g(1)-gq(2) = p3,.... and
is called “Gentan curve”, The appended figures
show why the limiting age-class distribution resem-
bles the Gentan curve. The shaded area of the se-
cond figure indicates the felling in the oo period and

that of the third the regenerated in the %o+ period.
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Both of the age distribution are similar to the
Gentan curve on the left and sustain their form

unchanged for ever.

From the definitions of the age-class transition
probability p(j,k) and the Gentan probability q(j)

hold the following relations.

a(d) = p(1,2)p(2,3) ..... p(-1,i)p(, 1) (16)
pG.1)=4q0,1) 17)

Therefore the theory by the age-class-transition
matrix and that by the Gentan probability reduce
to the same conclusion.

From the very beginning the quantum mechanics
adopted two different approaches, one by the ma-
trix and the other by the wave equation. And the
wave equation is equivalent to the corresponding
integral equation, Furthermore the core of the
quantum theory is reduced to find eigenvalues or
corresponding eigenvectors of the matrix or those
of the integral equation. On the other hand the age-
class transition theory adopts two different approa-
ches also, one by the matrix and the other by the
renewal equation. We have seen that the renewal
equation is equivalent to a kind of integral equation.
That is the reason why we studied the same age-

class transition process by the different two methods.

8. Estimation of the Gentan Probability from

the felling statistics
For all restrictions each individual forest owner
in all countries wishes to treat his forest of his own

will. Usually he adopts the most profitable felling

“Forest age distribution at

‘“The shaded are harvested.”

AN
MMM

n 2 ] n

“Forest age distribution at
oo +17,
“The shaded is replanted.”

age for his forest. Accordingly there is caused a
forest life span distribution in each forest district.
From the definition the Gentan probability is noth-
ing else but a waiting time of a stand up to its
felling. It is therefore possible to determine the
probability from the statistics of the forest life
span.

Let us assume that a stand is harvested, if its
mean diameter is k c¢m thick, and that the mean
diameter grows in average m cm thicker in a period.
Under these assumptions the probability f(k, t)
that the mean diameter of the stand is k cm thick
within t period, is given by the following Poisson’s
dinsity function.

f(k,t) = exp(-mt) (mt)*/k! (18)

The mean diameter becomes k cm thick at the tth
period, if and only if it has already been k-1 cm till
the t-1th period and becomes 1 cm thicker within
the successive period (t-1, t). Assuming the consecu-
tive events independent the probability F(k,t)dt,
that the mean diameter is k cm thick within the
period (t-1,t), is obtained by multiplying two
probabilities f(k-1,t) and mdt.

F(k,t)dt = f(k-1,t)mdt (19)

From the derivation it is clear that this formula
gives the life span distribution of the forest. Then
the probability, that the average life span of the
forests lies in the time interval (j,j+1), that is the
Gentan probability q(j), is given by

j+l
q() = f i F(k,t)dt (20)
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Letting
n x? .
= -, mt=—— 2
k 2 2 2H
this integral (20) leads to
_% 2 x '121"
L 22D e e )
a) = __n— 2mn
1"(-2")

This integral is easily obtained by the x* table.
In order to apply the formula to a concrete case,
two parameters m and k must be estimated previ-

ously. But there exist two relations

E(ty=k/m, o (t)=k/m? 23)

where E(t) and ¢ (t) are the mean and the variance
of the felling age, respectively. Thus on the basis
of the statistics we can predict the transition and
the product in a forest district by means of the

Gentan probability.

9. Yield estimation by the linear programming

We have shown above that all the forests will be
able to arrive in normal state inevitably in the long
run. However the process to the normal state is
not necessarily optimal, but only feasible, Now let

us assume an initial age-class vector a and a target

vector a’ in the age-class space. Each method of the
yield estimation corresponds to a path connecting
two vectors. Thereore the yield estimation accounts
to a problem to find an optimal path according
to the purpose of the management.

The problem will be successfully solved by means
of the linear programming as follows. We shall
explain the method by an example. Without loss of
generality we confine outselves to the first three
periods in the example. Denoting the initial age-class
distribution a,, a;,...,a and the final one by,
by,...by, bn+1""
out on the same way as the “Gentan method”,

S
., the following two tables are laid

us us
uz Zy us Uy “Zy
U 1 Zy uy u Yy Wy Y22
a3 X1 Y2 Z3 ay ay-Xy a1X1-y2  3;1X1Y2L3
az X2 Y2 Z2 a3 a3-Xz A2+XpY2 X2 Y3iZa

X X - E
2+2 *n ?n%n 2n*nVn+1 %0 nYn+1%ne2

#® ®

where x;, X, Xt Vi, Vason¥ 15 215 22500249
are the undetermined felling areas and u;, u; and
ug are their totals of the periods, respectively. That
is

Uy =xy + x5 +..‘.+xn

Uy =yrtya oty
Uy =2y tzp btz o

(24)

The conditions, that the final age-class distribu-
tion at the thrid period is by, b, ,..., are represented

by the following equalities.

Usj =17 +Z2+....+Zn+2 =b,

Uy -y Eyr vty bty 4 =b,(25)
Uy =¥y -2y =X Xy bt X -V -2 S by

Besides these conditions we can list up linear
equalities and inequalities of these unknowns which
express the needs of the forest management. For
example, if we adopt the method of periods by area
(Flichenfachwerk), there must be conditions such
that

xptxgtotx Syrtya oty

=z, +z; + ....+Zn+2 (26)

or the periodic method by volume (Massenfach-

werk), conditions such that

ViXy tvaxy to v X

¥ SVIYe P Vays Yt

= - 2
Va+riYnel = V12 tvpzy btV aZiis Q2N

where vy, v, ,.... are the average stock per hectare at
each age-class, respectively.
Finally if we select tentatively the total yield W

throughout the periods as the object function,

W=vi(x; +y1 +2))+ V(s ¥ vt 2a) +..

- max (28)

The problem becomes the typical linear program-
ming.

From this point of view all the classical yield
estimation of the forest management can be regard-

ed as problems of the linear programming.

10. Supplement
(1) The method of the Gentan-probability has

been used for the prediction of the product from
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the private forests in Japan for about thirty years.
There has occurred a lot of problems with respect to
the estimation of the parameters.

(2) Even if there are no available statistical
data of the felling age, it is possible to estimate it
only from the annual felling area by means of the
“forest renewal equation’”. For this purpose it is
conveniently used the sufficient sequences of the
aerial or of the satellite photos taken annually. This
method will be the most fitted to predict the global
forest transition.

(3) Of course, the age-class transition matrix
fluctuates from period to period. But if the fluctua-
tions are confined within some small range, an
infinite product of such matrices converges stochas-
tically to a fixed matrix. This fact is treated on the

other paper presented to this meeting.
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Summary

A Gentan probability q(j) is the probability that
a newly planted forest will be felled at age-class j.
A future change in growing stock and yield of the
forests can be predicted by means of this probabi-
lity. On the other hand a state of the forests is
described in terms of an n-vector whose components
are the areas of each age-class. This vector, called
age-class vector, flows in a n-1 dimensional simplex
by means of n x n matrices, whose components are
the age-class transition probabilities derived from
the Gentan probabilities.

In the simplex there exists a fixed point, into
which an arbitrary forest age vector sinks. Theoreti-
cally this point means a normal state of the forest,
To each age-class-transition matrix there corres-
ponds a single normal state; this means that there

are infinitely many normal states of the forests.



