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ABSTRACT

A new predictive classification rule for assigning future cases into
one of two multivariate normal populations(with unknown normal-
mixture model) is considered. The development involves calculation
of posterior probability of each possible normal-mixture model via a
default Bayesian test criterion, called intrinsic Bayes factor, and sug-
gests predictive distribution for future cases to be classified that ac-
counts for model uncertainty by weighting the effect of each model by
its posterior probability. In this paper, our interest is focused on con-
structing the classification rule that takes care of uncertainty about the
types of covariance matrices(homogeneity/ heterogeneity) involved in
the model. For the constructed rule, a Monte Carlo simulation study
demonstrates routine application and notes benefits over traditional
predictive classification rule by Geisser(1982).
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1. INTRODUCTION

Many practical situations require the assignment of individual elements of
unknown origin to one or more populations on the basis of the values of several
characteristics. The objective of classification analysis is to construct a well-
defined rule using available data which can be used for assigning new objects.
Widespread prevalence of the classification problem in many fields has seen
the development of a plethora of new approaches for classification analysis.
See, for example, Anderson(1984) and Rencher(1995) for classical approach,
and Geisser(1982) and Lavin and West(1992) for Bayesian approach.

Among them, two major approaches, namely estimative and predictive
methods are well accepted and commonly used. Practical differences of them
are illustrated by Aitchison and Donsmore(1975). Aitchison, et al.(1977)
compared the two methods, and then advocated the use of predictive meth-
ods when the population distribution can be transformed to multinormality.
They also suggested the use of heteroscedastic predictive method when there
is a high possibility that the covariance matrices may differ appreciably across
the populations. Therefore, it is common practice that, before getting into
multinormal predictive classification, the first step is to conduct test of ho-
mogeneity in the covariance matrices to get a single model; mixed-normal
model with homogeneous(or heterogeneous) covariances. Then, based on the
test result, we usually proceed to get classification rule conditionally on the
selected model.

However, as stated in Kass and Raftery(1995), any statistical analysis
that selects a single model and then makes inference conditionally on that
model fails to take into account fully of uncertainty involved in model se-
lection so that it may well underestimate the uncertainty associated with
quantities of interest. Classification analysis also bears this problem. Thus
it is our view that we need a new approach more attuned to the investiga-
tor’s query: To what extent does each model considered has probability of
being fitted model. The query can be answered, at least in principle, if one
adopts a Bayesian approach and calculates the posterior probabilities of the
competing models, which follow directly from a default Bayes factor (named
intrinsic Bayes factor). A composite inference can then be made that takes
account of model uncertainty in a simple and formally justifiable way. In
Section 2, we review this approach which makes use of the idea of the intrin-
sic Bayes factor introduced by Berger and Pericchi(1996), and in Section 3
we derive a predictive classification rule which accounts for the possibilities
of homogeneous/heterogeneous covariance matrices across two multivariate
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normal populations. Section 4 examines the performance of the suggested
rule and notes some merits over traditional predictive classification rule by
Geisser(1982). Finally, Section 5 includes some concluding remarks.

2. PREDICTIVE APPROACH ACCOUNTING FOR
MODEL UNCERTAINTY

Suppose we have data D(say, training sample), assumed to have arisen
under one of several alternative models My, ..., M, having probability densi-
ties p(D|6;, M;), under M,,: = 1,...,J, where parameter vectors are unknown
and are of dimension k;. Given a prior distribution m(8,|M,) for the parameter
of each model, together with prior probability p; of each model being true,
the data produce the posterior probability of M; being true as

D|M)p;, .
p(M,|D) = —PPIM)p i=1,...,J, (2.1)

> p(DIM;)p;’

where the densities p(D|M,) are obtained by integrating over the parameter
space, so that

p(DIM) = [ p(DI6,, M) (0:|M.)ds, (2.2)

The above equation is called the marginal or predictive density of D under
M;. The Bayes factor(cf. Jeffreys, 1961) for M, against M, is defined by

B., — p(D|M;) _ fP(DWnMy:)W(QVtIMV:)d@;

_ - s 2.3
p(DIML) T p(Dlor, Moyn(o M yas,” 70 (29

The Bayes factor denotes the ratio of the posterior odds of M; to its prior
odds, regardless of the value of the prior odds. Thus B;; can be viewed as
the weighted likelihood ratio of M; to M, and hence can be solely in terms
of comparative support of the data for the two models(cf. Kass and Raftery,
1995). The posterior probability (2.1) that M; is true is then expressed in
terms of the Bayes factors:

J -1

ir=1 Pi

where B;; = 1/B,,.
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The posterior model probabilities given by (2.4) lead to solutions of pre-
diction that take account of model uncertainty. The ultimate goal of classifi-
cation analysis is prediction of a new observation Z, under the model M, and
for given data D, has density g(Z|D, 0;, M;). Then the predictive density of
Z, given D is

J
9(Z|D) = ) _f(Z|D, M)p(M;|D), (2.5)
i=1
where f(Z|D,M;) = [g(Z|D,0;, M;)p(6,|D, M,)df;, and p(6;,|D, M;) is pos-
terior density of 8; given D and model M;. This accounts for the uncertainty
about a true model by weighting the conditional predictive densities according
to the posterior probabilities of the alternative models.

Computing B,y in equation (2.3) requires specification of the priors, 7 (6;|M;)
and 7 (6|M,). Often in Bayesian analysis, especially in model selection, one
can use noninformative priors such as the uniform prior, the Jeffreys(1961)
prior, and the reference prior by Berger and Bernardo(1992). It is well known
that the difficulty with using the noninformative priors is that the priors are
typically improper and hence are defined up to arbitrary constants ¢’s. Hence
the Bayes factor B, will be defined up to c¢;/cy, which is itself arbitrary. A
common solution to this problem is to construct a default Bayes factor which
uses part of the data as a sub-training sample to eliminate the constant. For-
mal developments of the idea can be found in work of Gelfand, Dey, and
Chang(1992) and Berger and Pericchi(1996). If we let D(¢) and =" (6;|M,)
be the part of data(sub-training sample) and improper priors to be so used,
respectively. The idea is that D(¢) will be used to convert the = (6;|M;) to
proper posterior distributions

7 (0;|D(€), M;) o p(D(£)|6;, M,)x" (8;|M,). (2.6)

The idea is to then compute the Bayes factors with the remainder of the data,
using the 7 (6;|D(€), M;) as priors. Denoting the remaining data by D(—¢),
the Bayes factor B;;(D(£)) so obtained can be expressed as

[ p(D(—£)16:, D(£), M,)=" (6,|D(¢), M,)db;

Bu(DO) = § D516, D), My)n™ (0 D (2), My )a
B}, B;,(D(¢)), (2.7)
where .
B,},(D(g)) — fp(D(e)lgilvMi’)ﬂ“ (gi'lMi')doi’

S p(D()16;, M) N (6, M;)d0;
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and B)), denotes the Bayes factor (2.3) obtained by the noninformative priors
. (0, |M,) and 7% (01»/ !Mi/).

Clearly, (2.7) removes the arbitrariness in the choice of constant multiples
of the improper priors; the arbitrary ratio (c;/cs) that multiplies B}, would
be cancelled by the ratio (¢, /c;) that would multiply B;},(D(¢)), only if it is
finite. Using the Bayes factor (2.7), Berger and Pericchi(1996) introduced the
default Bayes factor which is called intrinsic Bayes factor under the following
definitions.

Definition 1. The training sample, D(¢), is said to be proper if
0< / p(D(£)|6:, M)x™ (6:|M,)d6; < oo

for all M, and minimal if it is proper and no subset is proper.

Definition 2. Let Dy = {D(1),D(2),...,D(L)} denote the set of all mini-
mal training samples, D(¢). The averages of the B, (D(£)) over all D(¢) € D;
defined by

L 1/L
Bl = ZB“ (D(¢)), and B/ = (]’[ B (D( e)))

are called intrinsic Bayes factors(IBF). Specifically, the former is called the
arithmetic IBF and the latter is called the geometric IBF. These are com-
monly denoted as B/,.

The IBF eliminates the instability due to dependence of B, (D(¢)) on
the choice of the minimal training sample. See Berger and Perlcchl (1996)
for the properties of the IBF. Several variants of the IBF are also suggested
by Berger and Pericchi (1996). These (including the IBF) are applicable for
general situations (nested, nonnested, and even irregular problems) and they
are shown to be corresponding to actual Bayes factors, at least asymptotically.

3. POSTERIOR PROBABILITY FOR
CLASSIFICATION MODEL

Suppose we have two populations II; and II, each specified by a classifica-
tion model M;, i = 1,2, where M; defines the distribution of each population
distribution II, ~ N,(u, ), k = 1,2, where parameters are unknown. Let
our interest of model comparison be homogeneity(or heterogeneity) of the
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covariance matrices between two multivariate normal populations, so that
model specification may be

[1 : 21 - 22(: Z), M2 : 21 76 22. (31)

Let X;(k), X2(k),..., Xy, (k) denote independent p variate sample of size N,
from II, with distribution N,(u,, £;), & = 1,2, and let denote the two samples
as D(training sample). Then if we define

X (k) = 322,00/ M Vi = 2060 = KOG () = X (8.

and S, =V, /(N — 1), under the model M,, the joint probability density of
D is given by

2
p(D|p1, pa, Ln, Lo, M;) H (2m) =2 5| \”ZeXP{——tT[E 'Cil}, (3:2)

where C, = (N — 1)S;, + Ni(pr — X (k) (. — X (k))'. Setting £; = 5, = 2
in equation (3.2), we get the joint probability density conditionally on M,.

It is to be noted that in classification applications our interest focuses pri-
marily on a statement concerning the relative probability that an observation
belongs to one or another of the population, and not about of making proba-
bility statement about where a parameter lies. Thus we shall use a particular
convenient prior density to reflect an initial diffuseness or vagueness about
the unknown parameters. Since the arbitrary constants can be removed by
the default Bayes factor (2.7), without loss of generality, we can consider re-
spective standard vague prior densities(Jeffreys diffuse priors) of M; and M,
with constant multiples ¢; and c¢5:

7 (1, po, SIMy) = ¢ | X7 P/

and ,
Y (w1, po, L1, o] Ma) = ¢ H |z, |2, (3.3)

k=1

Lemma 1. Under the noninformative priors (3.3), respective marginal den-
sities under M; and M, are

p" (D|M)) = e (2m)” IR (N N) TR A (N

r

p¥(DIM;) = czH(%)“‘“'“"”N;”“A(z)I(Nk—1)Sk|‘<”’k—”/2,(3-5)
k=1
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where A(1) = 20(Y" -/ 2gre= DA T{(N* —1-5)/2}, N* = N+ N, and
A(2) = 200 Dl DI T T{(Ny = 5)/2}-

Proof. From the definition of the marginal density (2.2) and the likelihood
(3.2),

2
pt (DIM) = /p(Dllil,m, S, M) (s pe, SIM1) [ dpndS (3.6)
k=1

. - 1
- cl/(27r)“\ 2> +p+1)/2 exp{——itrz_l[(N* —~2)8,

b3 Nalae = X () = X ()] T] dia

where N* = N; + Ny and S, = (Vi + V,)/(N* — 2) is the pooled sample
covariance matrix.

We obtain the marginal density p” (D|M,) in the following way. Integrate
(3.6) with respect to p,;’s using multivariate normal distribution. This gives

. - 1
01(271,)—(‘\ ~2)p/2(N1N2)—[)/2|E|*(A\ +p-1)/2 exp {_itr[zal(N* _ 2)51)]}’

(3.7)
and hence the desired marginal density (3.4) can be found by integrating
with respect to Y, using the inverted Wishart normalizing constant. Similar

integrations with respect to p; and X,, k = 1,2, for the expression below
yield (3.5).

p" (D|My)

1l

2 2
/P(DIM,M, %1, B, Mo)r™ (py, pa, S1, So| M) [] dun [ 42
k=1 k=1
2
4 T 1
= 62/ H(27T)Ak"\kp/2|2k1—(‘Nk+p+l)/2 exp{—gtrzgl[(Nk - 1)5;,;
k=1

+ Np(ur — X (&) — X &)1} TT dus [T @5k (3.8)

The above marginal densities obtained from the diffuse priors give the
following theorems.

Lemma 2. A sub-training sample, D(¢), consisting of p + 1 distinct obser-
vations from each of population(Il;, k£ = 1, 2), is proper and minimal for the
marginal densities of M, and M,.

Proof. For the derivation of the marginal densities (3.4) and (3.5), the sample
covariance matrix S = Vi /(N — 1) of k-th multivariate normal population is
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involved (see, equations (3.7) and (3.8)). Therefore, it is necessary to secure
|Sk| # 0, and |S,| # O for the derivation, and hence N, > p + 1 for k = 1, 2.
If this condition is met, we can see that 0 < p* (D|M,) < oo for both M, and
M,.

Using the sub-training sample of size p + 1 from each population, we
calculate the default Bayes factor in (2.7) which removes the arbitrariness in
the choice of constant multiples of the improper priors (3.3).

Theorem 1. Let underlying classification model be M; as defined in (3.1),
and let alternative model to be compared be M;. Then the default Bayes
factor (2.7) for M, against M, based upon a minimal training sample D(¢)
and the improper prior (3.3) is given by

B12(D(¢)) = BiyBy(D(¥)) (3.9)
2 (N = 1)8, (Ve D72 I(2p)S; 1"
[(N* = 2)8, [N -2/2 i_1 IpS;|P/?

L TV —1-4)/2) T Do T =4 +1)/2)

oy [ T{(N — 5)/2} P T{(2p-j+1)/2}

where S; and S; denote respective quantities of the unbiased sample co-
variance and the pooled sample covariance matrix obtained from a minimal
training sample D(¢) of size 2(p+1) consisting of two sets of p+1 observations
obtained from each population II;, &k = 1, 2.

Proof. From (2.7), we see that
Bi2(D(¢)) = BBy (D(0)),
p" (D|M;) p" (D ()| M2)
p¥ (D|M2) p™ (D ()| M1)

(3.10)

Lemma 2 implies that p~¥ (D(€)|M,) is the marginal likelihood of M,, i =1, 2,
obtained solely from the sub-training sample, D(¢) of size 2(p + 1) consisting
of two sets of p + 1 observations observed from each population IT;, £ =1, 2.
Modifying the marginal densities in Lemma 1 accordingly for p" (D (£)| M)
and p" (D (€)|M;), we see that Lemma 1 evaluates (3.10) in the expression of
(3.9).

The intrinsic Bayes factor(IBF) obtained from B;,(D(¢)) (denoting B{,)
can be an alternative to the Bayes factor using the natural conjugate pri-
ors. The former has merit that, when sample size is large it circumvents the
problem of estimating the hyperparameters involved in the latter.
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4. PREDICTIVE CLASSIFICATION RULE

As asserted in Berger and Pericchi (1996, p.120), B, can be used for
the model selection criterion, and let the model M; be selected as the best
supported by the data. Then, regardless of the value of the B{, (big or almost
equal to 1), it has been common practice to construct predictive classification
rule conditionally on M,. However, in our view, rather than constructing
classification rule under M;, it is natural to construct a classification rule
which not only takes good care of the situation but also keeps all models
in the analysis, accounting for model uncertainty by weighting the effect of
each model. The effect of each model, M,,: = 1,2, can be weighted by its
posterior:

2 ., -1
p(M;|D) = (Z p—lB{,,) , 1=1,2, (4.1)
i=1 Pi

where p; is the prior probability of the model M;. If p; is known, the posterior
probability of M, can be obtained from (4.1). If p; is unknown default choices
of p; will often be used. In many situations the obvious choice is p; = 1/2(see,
Berger and Pericchi(1996), for other default choices).

Lemma 3. Suppose there exist underlying models M; and M, in (3.1), for
the two populations classification, and suppose the improper prior densities
(3.3) are assumed for respective model parameters. Then, accounting for the
model uncertainty, we obtain predictive density of a new observation Z to be
assigned to one of the two populations, II;, k¥ = 1, 2, given by

¢(Z|D.1L,) = Zf(Z|D,Hk,M.,v)p(M,-ID>, (4.2)

where
f(Z|D, I, My) = St,{N*" —p—1,X(k),(1+1/N.)/(N" = p—1)(V; + V2)}

and

f(ZlD’Hk’ M2) = StP{Nk - an(k)’ (1 + 1/NL:)/(NI~: - p)Vk},

for k = 1,2. Here St,{a,b, c} denotes a p-dimensional variate t density func-
tion with location parameter b, scale parameter ¢, and degrees of freedom a,
defined on R” by the density at Z (cf. Press, 1982).

Proof. Given the posterior probabilities p(M;|D), i = 1,2, the uncertainty
of each model can be accounted for by weighting the effect of each model
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by its posterior probability. This leads to the unconditional(unconditional
on M,;) predictive density of Z. See Geisser(1982) for the derivation of the
conditional predictive densities f(Z|D,II;, M;), i =1, 2.

Suppose we use the unconditional predictive density g(Z|D,II,), k£ = 1, 2,
for the classification, and suppose a prior probability of belonging to k-th
population IT; is 7, k =1, 2, and Zle 7, = 1, the risk incurred in classifying
an individual with measurement vector Z as II; is

2
LTI L),
R(|z, p) = Z=t e PSR T
2i=19(Z|D, ),

(4.3)

where L(II,, II;), k = 1,2, is the cost or loss associated with the classification
error. Let assume the special but commonly used loss function;

L(IT,, IT;) = 1 — 6(IT,,, T0; ), (4.4)

where §(II; , II;) = 1 if II;, = II;, otherwise it is zero. Then we have the
following theorem.

Theorem 2. A Bayes rule for the predictive classification, accounting for
the model uncertainty about M; and M,, is to classify a new observation Z
into II; if Z belongs to the classification region R;.

Ry : mg(Z|D,1I) > mag(Z|D,1I,). (4.5)

Otherwise classify it into II;.

Proof. The classification risk incurred in classifying an object with mea-
surement vector Z as k is (4.3). This can be minimized by choosing k that
minimizes the numerator in (4.3). Minimizing the numerator, we have the
rule which chooses k such that

g(ZID’HL)TrL = Max g(ZlD,H;;)’/Tk, k= ]., 2.

This leads to the classification region R;.

The rule resulting from choosing k to minimize R(II;|Z,D) in (4.3) is
known as the Bayes rule, and it achieves minimal classification risk among
all possible rules based on the unconditional predictive density. The mixing
proportion(the prior probability of II,, 7., can be found in various ways.
Besides the so-called little knowledge estimate which set my = m = 1/2, a
decision theoretic estimate by Anderson(1984), Bayesian estimate(cf. Lavin
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and West, 1992), and an information theoretic estimate by Kim(1995, 1996)
are available.

5. NUMERICAL RESULTS

The goal of this section is to study the effectiveness of the suggested
predictive classification rule (denoted by NEW) in Theorem 2 and to identify
some situations where one would (and would not) expect improvement with
NEW. The performance of NEW is compared with the classical predictive
classification rule by Geisser(1982) which does not account for the model
uncertainty. The comparison between the two rules is conducted in terms of
correct classification rate (1- Error rate) estimates evaluated by the validation
sample method (cf. Rencher, 1995).

We used computer simulation to calculate the desired correct classification
rates of the two rules, Pr{NEW) and Pr(Geisser), under the default prior
values p; = p; = 1/2 and m; = 7w, = 1/2. Our SAS/IML program generated
couple of samples (training sample(D;) and validation sample(V;)) from each
population IT;, « = 1,2, formed NEW and Geisser’s predictive classification
rules with given training samples D, of each size N;, ¢ = 1,2, so that D =
{D,, Dy}. Then the validation samples V; of each size N, are used to evaluate
correct classification rates of the two rules. The correct classification rate is
determined by the proportion of correct classified in the validation samples.
See Rencher(1995, p.337) for the merits of the validation sample method.

In constructing NEW, the unconditional predictive density in (4.2) needs
the posterior probabilities of M;, i = 1,2, that are calculated from (4.1).
The B{, and the posterior probabilities in (4.1) are obtained in the following
scheme:

Step 1. Set up a set of all possible minimal training samples (equivalently
sub-training samples) {D(¢)}), £ =1,...,L; L = v,C,41 X y,C,41, where
D(¢) denotes 2(p + 1) observations selected from the training samples, D,
and D, consisting of p + 1 observations from D; and p + 1 from D,.

Step 2. For each set of the minimal training sample D(¢) and the remaining
sample D(—¥¢), calculate By2(D(¢)) in (16) to obtain B/, using the geometric
IBF (cf. Definition 2):

L 1/1
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In our simulation, we use 100 randomly selected minimal training samples
(L = 100). These are sufficient for controlling the standard error associated
with the average of By2(D(¢))’s.

Step 3. Calculate p(M;|D), ¢ = 1,2, from (4.1).

The reason for using the geometric IBF for obtaining B/, is that it has
the nice property of symmetry, i.e. B{, = 1/B},, while the arithmetic IBF
does not have the property (cf. Berger and Pericchi 1996). To highlight the
property of NEW that accounts for the model uncertainty in (3.1), without
loss of generality, we consider the following case for each set of multivariate
normal population density parameters:

(i) Population 1 density: ¢,(u;, X;), where j-th component of y; is given
by p1;, =0; j=1,...,p, and X; = I,. Here ¢,(u1, ;) denotes the density of
N, (p1, Zh).

(ii) Population 2 (mixed) density:
ad’p(,uﬂ, 21) + (1 - a)d)p(l'l'% 22)’ 0<acx 1a

where j-th component of x, is given by py; = 8(—1)/*! and &, = Diag(dy;), a
diagonal matrix with j-th diagonal element dy; = 7/(p—1)+.5, 7 =1,...,p.

Under the two population densities D; and V; were generated. Espe-
cially for D, and V3, a rejection sampling technique(cf. Morgan, 1984) using
uniform distribution(U (0, 1)) is adopted for generating the mixed samples
according to the mixed proportion 0 < o < 1.

Table I, summarizing the results of the simulation with N; = N, = 30,
presents the average correct classification rates (Pr(NEW) and Pr(Geisser))
over the 200 replications for NEW and classical predictive classification rule.
Also presented are the posterior probability, Pr(M;|D), of M, defined in
(3.1) and their standard deviations in the parentheses. For a reference, the
probability value of Box’s M test(cf. Rencher, 1995, P.282) for testing null
hypothesis H : ¥; = 3, is also given in the table. The simulation results
with other values of N; and N, revealed the same implications as Table 1,
thus we eliminated them in the tabulation.

The table shows that, except for asterisked cases, NEW achieves slightly
higher correct classification rate than Geisser’s classical predictive classifica-
tion rule does. Asterisked cases were mainly occurred to some cases where
a = 1/6,5/6. This implies that as « —0 or 1 NEW may not improve the cor-
rect classification rate, but at least gives a predictive classification rule which
accounts for the model uncertainty. As would be expected, like Geisser’s rule,
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Pr(NEW) increases as the dimension of the measurement space increases,
more dramatically increasing for the larger value of 3(relating to the dis-
tances between two populations). Moreover, it is noted from the table that
the posterior probability of M, obtained by (4.1), p(M;|D), is consistent with
the probability value of Box’s M test. The above results imply that NEW
safely incorporates the model uncertainty in the classification analysis and
improves the correct classification rate when uncertainty between the two
models M; and M, is high.

TABLE I. Correct Classification Rates(N; = N, = 30)

B8=1 /=2
p  (aNy, (1 -a)Ny) Pr(Geisser) Pr(NEW) Pr(Geisser) Pr(NEW) Pr(M,|D) p-value
2 (5, 25) 76.183 76.017° 91.650 91.416° 381 008
S.D. (5.999) (6.149) (3.748) (3.642) (.379) (.023)
(10, 20) 74.183 75.017 90.633 91.117 .653 .054
S.D. (6.279) (6.139) (3.624) (3.683) (.359) (.098)
(15, 15) 73.283 73.550 90.483 90.817 819 143
S.D. (5.896) (6.084) (3.756) (3.755) (.291) (.133)
(20, 10) 74.233 74.267 90.700 90.783 913 261
S.D. (6.120) (6.073) (4.016) (4.063) (.191) (.282)
(25. 5) 74.267 74.217* 91.383 91.383 978 409
S.D. (6.331) (6.393) (3.964) (3.971) (.048) (.323)
3 (5. 25) 83.200 84.550 96.200 96.667 321 .007
S.D. (4.155) (4.481) (2.247) (2.260) (.434) (.025)
(10, 20) 82.183 84.550 96.200 96.667 435 .004
S.D. (4.622) (4.787) (2.556) (2.628) (.303) (.119)
(15, 15) 81.433 81.667 95.817 95.983 937 122
S.D. (4.594) (4.636) (2.778) (2.747) (.198) (.182)
(20, 10) 81.016 81.133 95.850 95.883 .983 .249
S.D. (4.543) (4.475) (2.797) (2.817) (.096) (.268)
(25, 5) 80.933 80.933 95.583 95.583 .999 .386
S.D. (5.266) (5.266) (2.836) (2.836) {.001) (.288)
i (5, 25) 83.083 84.332 97.200 97.050" 297 003
S.D. (4.478) (4.482) (1.908) (2.182) (.423) (.014)
(10, 20) 82.167 82.500 96.617 96.717 351 027
S.D. (4.560) (4.615) (2.421) (2.339) (.106) (.082)
(15, 15) 81.833 81.917 96.501 96.551 703 .086
S.D. (4.794) (4.781) (2.327) (2.303) (.262) (.149)
(20, 10) 82.283 83.367 96.717 96.821 .993 189
S.D. (4.682) (4.693) (2.177) (2.102) (.006) (.234)
(25, 5) 82.466 82.417* 96.817 96.833 .997 .327
S.D. (4.764) (4.868) (2.298) (2.241) (.026) (.278)
5 (5, 25) 86.350 86.633 98.633 98 400" 133 003
S.D. (4.567) (4.494) (1.578) (1.657) (.319) (.016)
(10, 20) 85.283 85.383 98.167 98.183 276 .023
S.D. (4.526) (4.500) (1.693) (1.716) (177) (.078)
(15, 15) 84.667 84.887 98.300 98.333 721 .088
S.D. (4.507) (4.601) (1.724) (.909) (.213) (.159)
(20, 10) 84.916 84.916 98.216 98.216 999 196
S.D. (4.428) (4.428) (1.695) (1.695) (.000) (.229)
(25, 5) 84.916 84.916 98.133 98.133 1.00 .344

8.D. (4.351) (4.351) (1.985) (1.985) {.000) (.283)
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6. CONCLUDING REMARKS

We have considered the problem of developing a predictive classification
rule that accounts for uncertainty of the normal mixture model for two popu-
lation classification analysis. As an alternative to the usual predictive classi-
fication rule by Geisser which does not take care of the model uncertainty, a
new predictive classification rule is proposed. The rule is designed to take care
of the model uncertainty by incorporating the posterior probabilities of the
models considered. The approach has at least two advantages too. When the
model uncertainty is high, the suggested predictive classification rule yields
better correct classification rate. Moreover, unlike the model selection crite-
ria based on asymptotic sampling theory (such as Box’s M test and AIC),
the posterior probabilities of the models to be compared are not only exact,
but provide a way of incorporating external information into the evaluation
of evidence about a hypothesis.

The choice of a noninformative priors is reasonable when there is no prior
information available for the normal mixture model parameters. Informative
priors could also be used. The use of a multivariate normal prior for the
mean parameter vectors and inverted Wishart for the covariance parameters
would result in similar predictive classification rule as in the paper. The study
pertaining to the performance the predictive classification rule obtained by
the informative priors is not unimportant and left as a future study of interest.
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