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THE (R,S)-SYMMETRIC SOLUTIONS TO THE
LEAST-SQUARES PROBLEM OF MATRIX EQUATION
AXB=C
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ABSTRACT. For real generalized reflexive matrices R, S, i.e., RT = R, R? =
I, ST = 8,82 =1, we say that real matrix X is (R,S)-symmetric, if
RXS = X. In this paper, an iterative algorithm is proposed to solve the
least-squares problem of matrix equation AX B = C with (R,S)-symmetric
X. Furthermore, the optimal approximation solution to given matrix Xq is
also derived by this iterative algorithm. Finally, given numerical example
and its convergent curve show that this method is feasible and efficient.
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1. Introduction

Throughout this paper, denoted by RZ‘X” the set of all m X n real matrices
with rank k, and OR™*™ the set of all n x n real orthogonal matrices. Let
the superscripts T and I,, be the transpose and identity matrix with order n,

respectively. For matrices A = (a1, as,...,a,),B € R™*" a; € R™, R(A) and
tr(A) represent its range and trace, respectively. The symbol vec(-) stands for
the vec operator, i.e., vec(A) = (a¥,al,... ,al)”. Let A® B be the Kronecker

product of matrices A and B. Moreover, (A, B) = tr(BT A) is defined as the
inner product of the two matrices, which generates the Frobenius norm, i.e.,
Al = V< A A> = /tr(AT A).

We introduce the following conception (see [2,3] for details).
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Definition 1. For given generalized reflexive matrices R € R™*™, § € R"*",
ie, RT =R, R? = I,, ST = 8, 8% = I,,, we say that matrix X € R™" is
(R,S)-symmetric ((R,S)-skew symmetric), if RXS = X (RXS = —X).

The set of all m x n (R,S)-symmetric ((R,S)-skew symmetric) matrices with
respect to R and S is denoted by GSR™*" (GSSR™*™).

Let J = (en,en—1, - ,e1), here e; is the " column of identity matrix I,.
If JXJ = X, we say that X € R™ " is centro-symmetric matrix, which has
practical applications in information theory, linear system theory, linear estimate
theory and numerical analysis (see [4,5]). From Definition 1, it is obvious that
(R,S)-symmetric matrix is the extension of the centro-symmetric matrix (when
R = 8 = J) and reflective matrix [©7) ( when R = ), respectively.

Remark 1. In this paper, let R, S be fixed generalized reflexive matrices as in
Definition 1.

For above generalized reflexive matrix R, RT = R implies that the eigenvalues
of R belong to the real field, and the absolute of the eigenvalues equal to 1
because of R? = I. The matrix S has similar properties to R. Hence, we have
the following conclusion.

Lemma 1. For given generalized reflexive matrices R, S, there exist unitary
matrices Uy € OR™*™ Uy € OR™ ™ such that

R:Ul({; AIO >U1T,S:U2<g 0 l)UQT.
m-—r n—

According to Definition 1 and Lemma 1, we can obtain another result on the
(R,S)-symmetric matrix.

Lemma 2. For matrices R, S in Lemma 1, X € GSR™*™, then

B X1 0\,
X=U ( 0 X, ) Uy,
where X, € R™, X, € Rm—m)x(n=1)

From Lemma 2, we can easily get a (R,S)-symmetric matrix by choosing
different X;, but U; (i = 1,2) are fixed in Lemma 1.
The problems to be discussed in this paper can be expressed as follows:

Problem I. Given matrices A € RP*™, B € R" C € RP*Y, find X €
GSR™*" such that

JAXB—C|= min |AYB-C]|.
YeGSR™mxn

Problem II. Given matriz Xy € R™*", find X such that
IX — Xo|l = Jain [|X — X,
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where Sg is the solution set of Problem I.

In fact, Problem 1 is the least-squares problem of the well-known linear matrix
equation

AXB = C. (1)

or the minimum residual problem of (1) under Frobenius norm. This equation
has been widely discussed, such as, Dai [8] and Chu [9] have investigated this
matrix equation by using the generalized singular value decomposition (GSVD)
(101 of matrix pair, and established the solvability conditions. The existence
of the reflexive solution of the matrix equation has been studied by Peng et
al. in [6]. In addition, Peng |11] presented an iterative algorithm for finding
the symmetric solution of matrix equation (1), which can be terminated within
finite iteration steps if the roundoff errors were ignored. Deng et al. [12] proposed
iterative orthogonal direction methods for Hermitian minimum norm solutions
for the complex matrix equation AX B = C motivated by the conjugate gradient
method.

However, the matrices A, B and C are experimentally occurring in practice,
they may not satisfy the solvability conditions of the matrix equation, therefore,
we always need to consider the associated least-squares problem. For instance,
Huang [13] and william {3] have discussed the minimum residual problem for the
symmetric matrices set and (R,S)-symmetric matrices set by Moore-Penrose in-
verse, respectively. By constructing different matrix iterative methods, the gen-
eral solution, symmetric solution to the least-squares problem of matrix equation
(1) have been considered in the references [14-16].

Problem 11 is so-called the optimal approximation problem, which may arise
in many areas of science computing and engineering applications (see [16]). Here,
the given matrix Xy can be obtained by experimental observation or statistical
distribution information, but it always does not satisfy the experimental re-
quirements or the minimum residual restrictions, and the matrix X satisfies the
requirements and is closed to X in Frobenius norm or others. For this problem,
we refer to [5-7,11-16, 18-20] and references therein.

As the extension of the centro-symmetric matrix, the (R,S)—symmetric ma-
trix has important theoretical value, which has been discussed by matrix de-
composition and general inverse in references (2,3], but the methods and results
mentioned there are not convenient to be used in practice. Therefore, it is nec-
essary to establish iterative algorithm and study the associated matrix equation
problems. In this paper, we solve Problem 1 and II by constructing iterative
algorithm and obtain their solutions. We should point out that it R =5 =1,
our problems to be discussed are the same as those in [16], but the used method
is different. More, the iterative algorithm to be proposed here is similar to but
different from those in {12,14,15].

This paper is organized as follows. In section 2, an iterative algorithm will be
given to solve Problem I. In section 3, we will study Problem II. In section 4, some
numerical examples will be given to illustrate the efficiency of this algorithm.
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2. The iterative algorithm for solving Problem 1

In this section, we will propose an iterative algorithm to find the solution of
Problem I. For any (R,S)-symmetric initial iterative matrix X; € GSR™*", we
will show that a solution of which can be obtained within finite iteration steps.

Definition 2. Assume that matrices M, N € RP*™,  where p,m are arbi-
trary positive integers, then M, N are called to be orthogonal each other, if
tr(NTM) = 0.

If F € GSR™™, G € GSSR™ ™, it is easy to verify that tr(GTF) = 0.

As we all know, the least-squares solutions of linear equations can be obtained
by its normal equation, which is always consistent. Hence, we have the following
assertion.

Lemma 3. Problem I can be transformed as to find the (R,S)-symmetric solu-
tions of the normal equation of matriz equation AXB = C with X € GSR™*",
that is,

ATAXBBT + RATAXBBTS = ATCBT + RATCBTS, X € GSR™ ™. (2)

Proof. We first prove that the consistency of matrix equation (1) with X €
GSR™*™ ig the same as that of the following matrix equation
AXB+ ARXSB =2C, X € R™*". (3)

In fact, if matrix equation (3) is consistent, and X is a solution of which, let

X = X%RXS € GSR™ " then

AXB=1L1A(X + RXS)B = $(AXB + ARXSB) = C,
which shows that X is a solution of matrix equation (1). The contrary is obvi-
ous.

Hence, matrix equation (1) and (3) have same (R,S)-symmetric solutions.
The Problem I can be transformed into finding the (R,S)-symmetric solution of
the normal equation of (3). By using the properties of the Kronecker product
and vec operator, the normal equation of (3) can be expressed as

ATAXBBT + ATARXSBBY + RATAXBB" S + RATARXSBB'S
=24TCBT + 2RATCB"S
when X € GSR™™, we can obtain equality (2) from above equation. O

In the next part, we will obtain the solution to Problem I by constructing
the iterative algorithm of matrix equation (2). The algorithm can be stated as
follows.

Algorithm 1.

Step 1: Input generalized reflexive matrices R € R™*™ S ¢ R™*",
and A € RP*™ B & R™*4, C € RP*Y. Choosing arbitrary X; € GSR™*".

Step 2: Compute
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R; = ATCBT + rATcBTs-aT A%, BBT — RAT AX,BB”'S,
P; = ATFAR;BB” + RATAR;BB”'S,

k=1

Step 3: Compute

Re|
X1 =Xk + “pkuzp

Step 4: Compute
Riy1 = ATcBT +RATCBTS — ATAXy (1BBT — RAT Xy, BBTS

IR:H?

= Ri — ypryz (ATAPkBBT 4 RATAP,BB'S),

Prs1 = ATARy BB + RATAR)1BB’S + "?‘{{*\1‘5 Py
Step 5: If Ry =0, stop. Otherwise, k :=k + 1, goto step 3.
Algorithm 1 reveals that X;, P, € GSR™ ™ (1 =1,2,...). When Ry = 0, we

obtain a solution of Problem I. The properties of this algorithm will be given
out in the form of lemma.

Lemma 4. The sequences {R;}, {P;} generated by Algorithm 1, are orthogonal
sequences in matriz inner product space GSR™ " i.e.,

tr(RIR;) =0, tr(P'P)) =0, 4,5 =1,2,...,k(k>2),i#]. (3)
Proof. We prove the conclusion by the principle of induction. Since tr(F7G) =
tr(GTF) for arbitrary matrices F,G with suitable size , it is enough to prove
that (3) holds for ¢ > j.
When & = 2, from Algorithm 1, noting that R;, P, € GSR™*™, we have

tr(RTRy) = tr(RTRy) — —?,i‘i,ll;tr[(ATAPl BBT + RAT AP,BBT 8)T Ry]
= tr(RTRy) — filhb tr[PT(AT AR BBT + AT ARR,SBBT)]

— tr(RTRy) — Lﬁ%“'—zzr[ﬂ (AT ARy BBY + RAT AR, BBT S)|

— Ml tr(PT(AT AR\ BBT — RAT AR, BB 5)

2
= tr(RT Ry) ~ Wbt (PT )

=0 (4)
and
tr(PI'P)) = tr[(AT ARy BBT + RATAR,BBT $)T Py +
T(AT AP, BB" + RATAP, BB S))

triR3 (
tr|R §(A1 AP BBT —RATAHBBTS)] y Bl py 2
Bl

2
el tr(PTPy)

IR

:N tr[RY(Ry — Ra)| + H2l | Py = 0 (5)
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Assume that (3) holds for k = t, that is, tr(RIT R;) = 0, tr(P'P;) = 0,
j=1,2,...,t—1. Being similar to (4) and (5), we can verify that tr(R],; R;) = 0,
and tr(PL,P) = 0.

Furthermore, when & =t + 1, noting that the assumptions, we can obtain

tr(RL, R1) = tr(RTRy) — '|'|’,§;|'|'§ tr[(ATAP,BBT + RATAP,BBT )T P,

= — I8 tr[PT (AT AR, BB” + RA" AR, BB 9)]

— Bl tr|PT (AT AR\ BB — RAT AR\BBT'S)]

R,|)?
- — |||| P ||{'2 t’l"(PtTpl)

=0

and
tr(PLP1) = tr[(AT AR 41 BBT+ RAT AR, 1 BBT S)T P1]+ ll%j—ﬁLﬁtr(PtTpl)

I

tr[(ATAR;+1BBT + RATAR,1BBT )T ]
tr[RL, (ATAP,BBT + RAT AP, BBT S)]

— IR 4 [RT, (Ry — Ry)]

[EAE
=0.
In the same way, we can prove that tr(RY, | R;) = 0 and tr(Qf,,Q;) =0
when 2 < j <t — 1. We complete the proof. [l
Remark 2. From Lemma 4, we can see R; (1 = 1,2,...,mn) as an orthogo-

nal basis of matrix inner product space GSR™*". If R; # 0, we can compute
Rpnt1 by Algorithm 1, then there must be tr(RL,,  R;) = 0, which generates
Rpyn+1 =0, that is, X,ny1 is a solution of Problem 1.

Lemma 5. Suppose that X € GSR™*™ is a solution of Problem I, then
Xk, Pr, R in Algorithm 1 satisfy that

tr((X — Xx)"Pi] = |Ri|® k=12, (6)
Proof. When k=1, according to Algorithm 1 and Lemma 4, noting that R(X —

Xi)S = X; — X, we can obtain
t?"[(X - Xl)TPI]

=tr[(X — X1)T(ATAR,BB” + RATAR, BBTS)]

= tr{R{[ATA(X ~ X)BBT + ATAR(X — X,)SBBT"]}

= tr{RT[ATAXBBT + RATAXBBTS — ATAX,BBT — RAT AX, BB S|}
+tr{RT[(ATAXBBT — ATAX,BBT) — R(ATAXBBT — AT AX,BBT)S|}
= tr[RT(ATCBT + RATCBTS — ATAX,BBT - RATAX,BBTS)]
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= || R1f%. (7)
Assume that (6) holds for k = ¢, when k = ¢ + 1,
tT[(X — X,H_l)TPt]

— 2
= tr[(X - X))TP]— 1o (P Py)

R.|)?
= [|Rdll? — 4= (1 P12
j— 07

then, being similar to the proof of (7), we have
tr{(X = Xe1)" Pog]

= tr[(X — X¢41)T (AT AR, BBT + RAT AR, BBT S))

- ||||11§f||,[22 tr[(X — Xo11)T Py
=tr{R{, | [ATA(X — X;31)BB” + ATAR(X — X;,1)SBBT]}
=tr[R,,(ATCBT + RATCBTS — AT AX,1BBT — RATAX,{1BBTS)]
= |Rsy1 %,
Therefore, (6) holds for all integers k. The proof is completed. 0

Remark 3. Lemma 5 implies that, if Ry # 0, we have Py # 0. Therefore, the
iteration can not be terminated unless Ry = 0.

Based on the previous analysis and the remarks, we have the following main
result, its proof is omitted.

Theorem 1. For arbitrary initial iterative matriz X1 € GSR™*™, the solu-
tion of Problem I can be obtained within finite iterative steps in the absence of
roundoff errors.

The following lemma is stated from [13].

Lemma 6. Suppose that yo € R(M?) is a solution of inconsistent linear equa-
tions My = b, then yg is the unique least-norm solution.

Theorem 2. Let initial iterative matriz X1 = ATAHBB” + RATAHBBTS,
where arbitrary H € R™*™, or especially, X; = 0 € R™*™, then the solution
X* generated by Algorithm 1 is the least-norm solution of Problem I.

Proof. Algorithm 1 and Theorem 1 imply that if let initial matrix X; =
ATAHBBT + RAT AHBBT S, where H € R™ " is arbitrary, we can obtain a so-
lution X* of Problem I, which has form like X* = AT AYBBT + RATAY BBT S.
Hence, it is enough to prove that X* is the unique least-norm solution of Prob-
lem I.

We know that, by making use of the properties of vec operator, matrix equa-
tion (2) can be transformed as the following linear systems
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[(BBT)® (AT A) + (SBBT) ® (RAT A)vec(X) = vec(ATOBT + ATCBT). (8)

In addition, the iterative solution X* can be rewritten as
vec(X*) = [(BBT) ® (AT A) + (SBBT) ® (RAT A)|vec(Y)
€ R((BB")® (ATA) + (SBBT) ® (RAT A)]
which implies from Lemma 6 that vec(X*) is the least-norm solution of the lin-
ear systems (8). According to the reversibility of vec operator, X* is the unique
least-norm solution of Problem I. O

3. The solution to problem I1

In this section, we discuss the optimal approximation problem for the given
matrix Xy € R™*", i.e., Problem TI. Connecting with the definition of closed
convex set, we can verify that the solution set Sg of Problem I is a closed con-
vex set in the matrix inner product space GSR™*", so the solution of Problem
IT is unique. Without loss of generality, we can assume that the given ma-
trix Xy € GSR™*™ because of the orthogonality between (R,S)-symmetric and
(R,S)-skew symmetric matrices. In fact, suppose that X € Sg, we have

X - Xo|? = ||X _ Xo+12%XoS B X(),gzxos”2

~ [ - S s |

let X =X — Xy, C =C — AXyB, then Problem IT means to find the least-
norm solution of the new matrix equation

ATAXBBT + RATAXBBTS = ATCBT + RATCBTS. (9)
Taking Theorem 2, we know that if let initial matrix

X, =ATAHBB" + RATAHBBTS,
where arbitrary H € R™*" or especially, X1 = 0 ¢ R™ ™, then the solution X*
generated by Algorithm 1 is the unique least-norm solution of matrix equation
(9). Therefore, the optimal approximation solution X can be derived by X =
X* + Xo.

4. Numerical examples

In this section, we will give some numerical examples tested by MATLAB 6.5
to illustrate our results. Because of the influence of the roundoff errors, we see
matrix A as zero matrix if ||A]| < 1.0e — 010. That is, in the iterative process,
if | Rx|] < 1.0e—010, stop the iteration, and X, is regarded as a required solution.

Example Given matrices A, B, R, S as follows.
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r5 -3 0 3 0 2 87
0 -4 -6 4 -6 0 -4
-6 0 7 0 7 3 1
A= 0 5 -3 -5 -3 0 3
4 -7 0 7 0 -8 -3
-1 0 -6 0 -5 9 0
Lo -3 0 3 -7 0 1 |
(-3 5 -5 2 5 =2
0 4 9 9 4 —s
6 -1 7 0 -1 3
B=14 5 4 0 5 4 5 |’
-1 -6 -2 0 -6 2
0 -9 1 1 -9 2
ro28 72 11
14 -62 8
-16 31 -30
C=| —-11 53 14
34 80 32
—4 -36 —33
15 —41 —4

1069
1 0 0 00 0 01
00 -1 00 0 0
0 -1 0 00 0 0
,R=]10 0 0 00 0 1],
00 0 01 0 0
00 0 00 -1 0
Lo 0 0o 10 0 o]
01 0 0 0 0
10 0 0 0 0
g_|00 -1 0 0 o0
“loo0o 0o 1 0 o |
00 0 0 0 -1
00 0 0 -1 0
56 —72 11 7
-9 —62 13
-8 31 7
29 53 25
~13 —80 11
—27 —36 20
~32 -41 -8 |

Let initial iterative matrix X; = 0 € R7*5, then, by Algorithm 1 and iterating
87 times, we can obtain the least-norm solution of Problem 1, i.e.,

r —0.2671 —0.2671
0.2101 0
0 —0.2101
Xs7 = | —0.0836 —0.4111
—0.0769 —0.0769
0.4159  —0.4159
L —0.4111 —0.0836

and the minimum residual ||Rs7|| = 7.0490e — 011.
Suppose that the give matrix in Problem II is

—1.4142 —1.4142
1.0000 0
0 —1.0000
Xo= | —0.5000 —2.5000
—0.3535 —0.3535
21213 —2.1213
—2.5000 —0.5000

0 —0.2040 —0.1936  0.1936
—-0.2634 0.2046 —-0.2029 —0.3794
—0.2634 —0.2046 —0.3794 —0.2029

0.0833 —0.3549 0.2325 0.0855
0 0.3907 —0.2116 0.2116
0.0940 0 0.2039 0.2039
—0.0833 —0.3549 —0.0855 —0.2325
0 —1.0000 —1.0606 1.0606
—1.0606 1.0606 —1.0000 —1.5000
—1.0606 —1.0606 —1.5000 —1.0000
0.7071  -1.7677  1.2500 0.7500
0 2.0000 —1.0606  1.0606
0.5000 0 1.0606 1.0606
—-0.7071 —-1.7677 —0.7500 —1.2500

1

Compute Cy = AXoB, and let initial matrix be 7 x 6 zero matrix, we can also
obtain the least-norm (R,S}-symmetric solution X* of the new matrix equation (9) by
making use of Algorithm 1 with 59 iteration steps. Hence, the solution X of Problem

11 is
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g 10(lIAXB-CIl)

1 L L L L s L L L
100 200 300 400 500 600 700 800 900 1000
iteration number

FIGURE 1. Convergence curve for the Frobenius norm of the residual.

r —0.2671 —0.2671 0 ~0.2040 —0.1936 0.1936 7
0.1110 0 0.0112  0.2135 —0.1416 —0.0782
0 —0.1110  0.0112 —0.2135 -0.0782 —0.1416
X=X"4+Xo=| —0.1828 -0.8656 0.3578 —0.3450 0.2938  0.3868
—0.0769 —0.0769 0 0.3907 —0.2115 0.2115
0.4159 —0.4159  0.0940 0 0.2038  0.2038
L —0.8656 —0.1828 —0.3578 ~0.3459 —0.3868 —0.2938 |

Furthermore, in order to show the property of Algorithm 1, we stop the iteration if
|Rx]| < 1.0e—020, by Algorithm 1 and iteration 1000 steps, we obtain the convergence
curve (i.e., Figure 1) for the Frobenius norm of the residual (AX B — C).

From Figure 1, we can see that the descending of the residual Ry is rapid, which
imply that the iterative method in this paper is efficient. Certainly, for the matrices
with large orders, the convergence velocity may be slow, this is our urgent work in the
future.
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