• Title/Summary/Keyword: Nonlinearity of Wave

Search Result 184, Processing Time 0.028 seconds

Sweep Nonlinearity Estimation for High Range Resolution Millimeter-Wave Seeker Using Least Squares Method (최소 자승법을 이용한 고해상도 밀리미터파 탐색기의 비선형 위상 오차의 추정)

  • Yang, Hee-Seong;Chun, Joo-Hwan;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.56-67
    • /
    • 2012
  • In this thesis, to compensate the sweep nonlinearity occurring in the high resolution radar system using FMICW or FMCW, the method of the estimation of the nonlinearity is proposed. The nonlinear phase component caused by the nonlinear characteristic of the radar system is modelled as a linear combination of the sinusoidal functions consisting of various magnitudes and phases(systematic nonlinear phase error) and a random component(stochastic nonlinear phase error). From two IF signals that are measured respectively independently for two reference point targets lying in different distances which are known, a sparse linear equation is made and solved by least squares method to estimate the nonlinear phase component. The estimated component can be used for predistortion method to compensate the sweep nonlinearity.

In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system

  • Dib, Gerges;Roy, Surajit;Ramuhalli, Pradeep;Chai, Jangbom
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.867-876
    • /
    • 2019
  • Second harmonic generation using nonlinear ultrasonic waves have been shown to be an early indicator of possible fatigue damage in nuclear power plant components. This technique relies on measuring amplitudes, making it highly susceptible to variations in transducer coupling and instrumentation. This paper proposes an experimental procedure for in-situ surface wave nonlinear ultrasound measurements on specimen with permanently mounted transducers under high cycle fatigue loading without interrupting the experiment. It allows continuous monitoring and minimizes variation due to transducer coupling. Moreover, relations describing the effects of the measurement system nonlinearity including the effects of the material transfer function on the measured nonlinearity parameter are derived. An in-situ high cycle fatigue test was conducted using two 304 stainless steel specimens with two different excitation frequencies. A comprehensive analysis of the nonlinear sources, which result in variations in the measured nonlinearity parameters, was performed and the effects of the system nonlinearities are explained and identified. In both specimens, monotonic trend was observed in nonlinear parameter when the value of fundamental amplitude was not changing.

SIX SOLUTIONS FOR THE SEMILINEAR WAVE EQUATION WITH NONLINEARITY CROSSING THREE EIGENVALUES

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.361-369
    • /
    • 2012
  • We get a theorem which shows the existence of at least six solutions for the semilinear wave equation with nonlinearity crossing three eigenvalues. We obtain this result by the variational reduction method and the geometric mapping defined on the finite dimensional subspace. We use a contraction mapping principle to reduce the problem on the infinite dimensional space to that on the finite dimensional subspace. We construct a three-dimensional subspace with three axes spanned by three eigenvalues and a mapping from the finite dimensional subspace to the one-dimensional subspace.

Flow Regimes of Continuously Stratified Flow over a Double Mountain (두 개의 산악 위에서의 연속적으로 성층화된 흐름의 흐름 체계)

  • Han, Ji-Young;Kim, Jae-Jin;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2007
  • The flow regimes of continuously stratified flow over a double mountain and the effects of a double mountain on wave breaking, upstream blocking, and severe downslope windstorms are investigated using a mesoscale numerical model (ARPS). According to the occurrence or non-occurrence of wave breaking and upstream blocking, three different flow regimes are identified over a double mountain. Higher critical Froude numbers are required for wave breaking and upstream blocking initiation for a double mountain than for an isolated mountain. This means that the nonlinearity and blocking effect for a double mountain is larger than that for an isolated mountain. As the separation distance between two mountains decreases, the degree of flow nonlinearity increases, while the blocking effect decreases. A rapid increase of the surface horizontal velocity downwind of each mountain near the critical mountain height for wave breaking initiation indicates that severe downslope windstorms are enhanced by wave breaking. For the flow with wave breaking, the numerically calculated surface drag is much larger than theoretically calculated one because the region with the maximum negative perturbation pressure moves from the top to the downwind slope of each mountain as the internal jump propagating downwind occurs.

Shoaling Characteristics of Boussinesq Models with Varying Nonlinearity (비선형 차수에 따른 Boussinesq 모형의 천수변형 특성)

  • Park, Seung-Min;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.121-127
    • /
    • 2008
  • Numerical experiments with weakly nonlinear MIKE21 BW module and fully nonlinear FUNWAVE model are performed to identify the nonlinear characteristics of Boussinesq models with varying nonlinearity. Generation of waves with varying amplitudes, nonlinear shoaling and wave propagation over submerged bar experiments showed the importance of nonlinear model in shallow water where nonlinearity becomes prominent. Fully nonlinear model showed the nonsymmetrical wave form more clearly and gave larger shoaling coefficients than those of weakly nonlinear model.

Determination of the Degree of Nonlinearity in the Response of Offshore Structures Using Higher Order Transfer Functions (고차 전이함수를 이용한 해양구조물 거동의 비선형도 결정)

  • 백인열
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.116-125
    • /
    • 1995
  • Higher order nonlinear transfer functions are applied to model the nonlinear responses obtained Inn dynamic analysis of single degree of freedom systems (SDOF) subjected to wave and current loadings. The structural systems are subjected to single harmonic, two wave combination and irregular wave loading. Three different sources of nonlinearities are examined for each of the wave loading condition and it is shown that the nonlinear response appear at the resonance frequencies of the SDOF even when virtually no wave energy exists at those resonance frequencies. Higher order nonlinear transfer functions based on Volterra series representation are used to model the nonlinear responses mainly f3r the flexible systems and clearly shows the degrees of nonlinearity either as quadratic or cubic.

  • PDF

Design of a Predistorter with Multiple Coefficient Sets for the Millimeter-Wave Power Amplifier and Nonlinearity Elimination Performance Evaluation (다중계수 방식을 적용한 밀리미터파 대역용 전력증폭기의 사전왜곡기 설계 및 비선형성 보상 성능 평가)

  • Yuk, Junhyung;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.740-747
    • /
    • 2015
  • Recently, mobile communication systems using the millimeter-wave frequency band have been proposed, and the importance of efficient compensation of the nonlinearity caused by 60 GHz high-power amplifiers(HPAs) is increasing. In this paper, we propose a predistorter structure based on multiple coefficient sets which are separately used to different ranges of input power values. These ranges correspond to varying levels of nonlinearity characteristics. The structure is applied to the 60 GHz HPA FMM5715X and the performance of correcting the nonlinearity of LTE signals is evaluated. Evaluation results using a hardware testbed demonstrate that the proposed predistorter structure achieves the maximum of 6 dB gain over the conventional method in terms of the adjacent channel leakage ratio(ACLR).

Acoustic Nonlinearity of Narrow-Band Surface Wave Generated by Laser Beam with Line-Arrayed Slit Mask (선배열 슬릿마스크를 이용한 협대역 레이저 여기 표면파의 음향 비선형성)

  • Choi, Sung-Ho;Nam, Tae-Hyung;Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1877-1883
    • /
    • 2010
  • We examined the mechanism of generation of higher harmonics by theoretically analyzing the frequency characteristics of a narrow-band surface wave generated by a laser beam with line-arrayed slit masks. We experimentally analyzed the effects of slit opening width and laser intensity on the acoustic nonlinearity of aluminum 6061-T6 alloy by using single-slit and line-arrayed slit masks. The magnitude of the harmonic wave depended on the slit opening width. In our experiment, we generated a 1.75-MHz surface wave by using an arrayed slit with intervals of 1.67 mm. The magnitude of the second harmonic component decreased about by 80% when the slit opening width was increased from 0.5 mm to 1.0 mm. In addition, the relationship between the magnitudes of the fundamental and the second harmonic wave showed good linearity, which agreed well with the typical behavior of acoustic nonlinearity.

Generation of Long Water Waves by Moving Submerged Bodies (수중물체의 운동에 의한 장수파의 생성)

  • Seung-Joon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.55-61
    • /
    • 1987
  • The wave system due to a moving submerged body is investigated both theoretically and numerically. Boussinesq equation, which is derived under the assumption that the effects of nonlinearity and wave dispersion are of the same order, is generalized to take the forcing agency into account. Furthermore, under the more restrive assumption that the disturbance is of higher order, inhomogeneous Korteweg-de Vries equation is derived. These equations are solved numerically to obtain the generated wave system and the wave-making resistance. These results are compared with those given by the linear theory.

  • PDF