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GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR A

LOGARITHMIC WAVE EQUATION ARISING FROM

Q-BALL DYNAMICS

Xiaosen Han

Abstract. In this paper we investigate an initial boundary value prob-
lem of a logarithmic wave equation. We establish the global existence
of weak solutions to the problem by using Galerkin method, logarithmic
Sobolev inequality and compactness theorem.

1. Introduction

In this paper we study the global existence of weak solutions for the initial
boundary value problem











utt −∆u + u− u log |u|2 + ut + |u|2u = 0, (x, t) ∈ Ω× (0, T ),

u = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where Ω is a smooth bounded domain in R
3, u is a complex scalar field. This

model arises from the study of Q-ball dynamics in theoretical physics (see [18]).
This type of problems have many applications in many branches of physics such
as nuclear physics, optics and geophysics [5, 9, 19]. The model (1.1) is closely
related to the following equation with logarithmic nonlinearity











utt −∆u+ u− εu log |u|2 = 0, (x, t) ∈ O × (0, T ),

u = 0, (x, t) ∈ ∂O × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ O,

(1.2)

where O is a finite interval [a, b], the parameter ε measures the force of the
nonlinear interaction and the nonlinear effects in quantum mechanics are very
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small. The problem (1.2) is a relativistic version of logarithmic quantum me-
chanics introduced in [3,4] and can also be obtained by taking the limit p → 1
for the p-adic string equation [15, 16, 21, 22].

It is easy to see that the problem (1.2) can be see as one dimensional case of
(1.1) without the first order derivative term and cubic term. In [12], by using
compactness method Gorka obtained the global existence of weak solutions
to the problem (1.2). In [2] Bartkowski and Gorka studied the corresponding
Cauchy problem for (1.2) O = R without boundary conditions. The global
existence of weak solutions, classical solutions and the traveling wave were
obtained.

The model (1.1) is introduced in [18] for studying the dynamics of Q-ball in
theoretical physics. The logarithmic nonlinearity is of much interest in physics,
since it appears naturally in inflation cosmology and supersymmetric filed the-
ories, quantum mechanics and nuclear physics [1, 10, 20].

The main difference between our work and [12] lies in: our problem is in
three dimensional case and involves another nonlinear term |u|2u; there is no
restrictions on the coefficient of the logarithmic nonlinear term u log |u|2.

Recently in [18] a numerical study of the model (1.1) is given. However,
there is no theoretical analysis for the problem. The purpose of this paper is
to give a mathematical analysis for the problem (1.1). We mainly establish the
global existence of weak solutions to the problem (1.1). This can be realized
in a few steps. Firstly we write the problem in a weak version. Secondly we
construct approximate solutions by the Galerkin method. Finally we prove the
convergence of the sequence of the approximate solutions. To get a priori esti-
mates of the approximate solutions, we employ the Gross logarithmic Sobolev
inequality and logarithmic Gronwall inequality, which are fundamental here.

We also mention some related mathematical work involving the logarithmic
term in the literature. In [7] Thierry and Alain establish the existence and
uniqueness of a solution for the corresponding Cauchy problem (1.1) in R

3

without the first order term and the cubic nonlinear term. There have been
some works on the logarithmic Schrödinger equation (for example, see [6,8,13,
14]).

The rest of our paper is organized as follows. In Section 2 we state the main
result. Section 3 is devoted to the proof of the main result.

2. Main result

We use the following notations throughout this paper: denote by (·, ·) the
inner product in L2(Ω) and by 〈·, ·〉 the duality pairing between H1

0 (Ω) and
H−1(Ω), ‖ · ‖p the Lp norm. We also use C to denote a universal positive con-
stant may take different values in different places. We introduce the definition
of weak solutions for the problem (1.1).

Definition 2.1. A function u defined on [0, T ] is called a weak solution of
the problem (1.1) if u ∈ Cw([0, T ];H

1
0 (Ω)), u′ ∈ Cw([0, T ];L

2(Ω)), u(0) =
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u0, u′(0) = u1 and u satisfies

(2.1) 〈u′′(t), φ〉 + (∇u,∇φ) + (u, φ) + (u′, φ)− (u log |u|2, φ) + (|u|2u, φ) = 0

for a.e. t ∈ [0, T ] and all test functions φ ∈ H1
0 (Ω).

Our main results read as follows.

Theorem 2.1. Assume that u0(x) ∈ H1
0 (Ω), u

1(x) ∈ L2(Ω). Then, the prob-

lem (1.1) admits global weak solution defined on [0, T ] for any T > 0.

3. Proof of Theorem 2.1

In this section we carry out the proof of Theorem 2.1. The proof is based on
Galerkin method. To proceed the proof we need the Gross logarithmic Sobolev
inequality and the logarithmic Gronwall inequality. For the convenience of the
reader we state the results here.

Lemma 3.1. Assume v ∈ H1
0 (Ω) and Ω is a bounded smooth domain in R

3.

Then, for any a > 0, it holds that
∫

Ω

|v|2 log |v|dx ≤

(

3

4
log

4a

e

)

‖v‖22 +
a

4
‖∇v‖22 + ‖v‖22 log ‖v‖2.

Proof. See [17]. �

Lemma 3.2. Assume that w(t) is nonnegative, w(t) ∈ L∞(0, T ), w(0) ≥ 0,
and it satisfies

w(t) ≤ w(0) + a

∫ t

0

w(s) log[a+ w(s)]ds, t ∈ [0, T ],

where a > 1 is a positive constant. Then we have

w(t) ≤ (a+ w(0))e
at

, t ∈ [0, T ].

Proof. See [7, 11]. �

We use the standard Galerkin method to construct approximate solutions.
Let {wj}

∞

j=1 be the eigenfunctions of the operator A = −△ with zero Dirichlet

boundary condition andD(A) = H2(Ω)∩H1
0 (Ω). It is well-known that {wj}

∞

j=1

forms an orthonormal basis for L2(Ω) as well as forH1
0 (Ω). Moreover, the linear

span of {wj}
∞

j=1 is dense in Lq(Ω) for any 1 ≤ q ≤ 6. Let Pk be the orthogonal

projection of L2(Ω) onto Vk = the linear span of {w1, . . . , wk}, k ≥ 1. Let

uk(t) =
∑k

j=1 gk,j(t)wj be an approximate solution to (1.1) in Vk. Then uk(t)
verifies the following system of ODEs:

〈u′′

k(t), wj〉+ (∇uk(t),∇wj) + (uk, wj) + (u′

k(t), wj)(3.1)

− (uk log |uk|
2, wj) + (|uk|

2uk, wj) = 0,

uk(0) = Pku
0, u′

k(0) = Pku
1,(3.2)



278 XIAOSEN HAN

for j = 1, . . . , k. More specifically,

uk(0) =

k
∑

j=1

uk,j(0)wj , u
′

k(0) =

k
∑

j=1

u′

k,j(0)wj ,

where

uk,j(0) = (u0, wj), u
′

k,j(0) = (u1, wj), j = 1, . . . , k.

Obviously, uk(0) → u0 strongly in H1
0 (Ω), u

′

k(0) → u1 strongly in L2(Ω) as
k → ∞. By using the Cauchy-Peano theorem, we know that the system (3.1)-
(3.2) admits a solution gk,j(t) ∈ C2[0, Tk] for every k ≥ 1 and some Tk > 0.
Then we can obtain an approximate solution uk(t) of the problem (1.1) over
[0, Tk].

Now we try to get the a priori estimate for the approximate solutions uk(t)
of the problem (1.1).

Multiplying (3.1) by g′k,j(t) and summing with respect to j from 1 to k, we
have

d

dt

[

1

2
‖u′

k(t)‖
2
2+

1

2
‖∇uk(t)‖

2
2+ ‖uk(t)‖

2
2−

∫

Ω

|uk(t)|
2 log |uk(t)|dx+

1

4
‖uk(t)‖

4
4

]

(3.3)

+ ‖u′

k(t)‖
2
2 = 0.

Integrating (3.3) over (0, t), 0 < t ≤ Tk, we get

1

2
‖u′

k(t)‖
2
2 +

1

2
‖∇uk(t)‖

2
2 + ‖uk(t)‖

2
2 −

∫

Ω

|uk(t)|
2 log |uk(t)|dx

(3.4)

+
1

4
‖uk(t)‖

4
4 +

∫ t

0

‖u′

k(s)‖
2
2ds

=
1

2
‖u′

k(0)‖
2
2+

1

2
‖∇uk(0)‖

2
2+ ‖uk(0)‖

2
2−

∫

Ω

|uk(0)|
2 log |uk(0)|dx+

1

4
‖uk(0)‖

4
4

≤ C0 −

∫

Ω

|uk(0)|
2 log |uk(0)|dx,

where C0 = C(‖u0‖H1(Ω), ‖u
1‖L2(Ω)) is a positive constant. To deal with the

last term in (3.4), we use the elementary inequality

(3.5) |t2 log t| ≤ C(1 + t3), ∀ t > 0,

where C > 0 is a positive constant. Then by (3.5) we have
∣

∣

∣

∣

−

∫

Ω

|uk(0)|
2 log |uk(0)|dx

∣

∣

∣

∣

≤ C|Ω|+ C

∫

Ω

|uk(0)|
3dx

≤ C(1 + ‖uk(0)‖
3
H1

0
(Ω))

≤ C(1 + ‖u0‖3H1

0
(Ω)).(3.6)
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Hence combining (3.4) and (3.6) gives

1

2
‖u′

k(t)‖
2
2 +

1

2
‖∇uk(t)‖

2
2 + ‖uk(t)‖

2
2 +

1

4
‖uk(t)‖

4
4 +

∫ t

0

‖u′

k(s)‖
2
2ds

≤ C +

∫

Ω

|uk(t)|
2 log |uk(t)|dx.(3.7)

Now we use Gross Sobolev inequality in Lemma 3.1 to estimate the last term
on the righthandside of (3.7) as follows

∫

Ω

|uk(t)|
2 log |uk(t)|dx

≤

(

3

4
log

4a

e

)

‖uk(t)‖
2
2 +

a

4
‖∇uk(t)‖

2
2 + ‖uk(t)‖

2
2 log ‖v‖2.(3.8)

Inserting (3.8) into (3.7), we have

1

2
‖u′

k(t)‖
2
2 +

(

1

2
−

a

4

)

‖∇uk(t)‖
2
2 +

(

1−
3

4
log

4a

e

)

‖uk(t)‖
2
2(3.9)

+
1

4
‖uk(t)‖

4
4 +

∫ t

0

‖u′

k(s)‖
2
2ds

≤ C + ‖uk(t)‖
2
2 log ‖uk(t)‖2.

By taking a = 1
4 in (3.9) we obtain

‖u′

k(t)‖
2
2 + ‖∇uk(t)‖

2
2 + ‖uk(t)‖

2
2 + ‖uk(t)‖

4
4(3.10)

≤ C(1 + ‖uk(t)‖
2
2 log ‖uk(t)‖2).

Noting that

uk(t) = uk(0) +

∫ t

0

u′

k(s)ds,

we have

‖uk(t)‖
2
2 ≤ 2‖uk(0)‖

2
2 + 2T

∫ t

0

‖u′

k(s)‖
2
2ds

≤ 2‖uk(0)‖
2
2 +max{1, 2T }

1+ C

C

∫ t

0

‖u′

k(s)‖
2
2ds.(3.11)

Then it follows from (3.10) and (3.11) that

(3.12) ‖uk(t)‖
2
2 ≤ A+B

∫ t

0

‖uk(s)‖
2
2 log ‖uk(s)‖2ds,

where

A = 2‖uk(0)‖
2
2 +max{1, 2T }(1 + C)T, B = max{1, 2T }(1 + C).

Noting B ≥ 1, then by the logarithmic Gronwall inequality in Lemma 3.2, we
get

(3.13) ‖uk(t)‖
2
2 ≤ (A+B)e

Bt

≤ CT .
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Therefore from (3.10) and (3.13) we conclude that

(3.14) ‖u′

k(t)‖
2
2 + ‖∇uk(t)‖

2
2 + ‖uk(t)‖

2
2 + ‖uk(t)‖

4
4 ≤ CT .

The estimate (3.14) implies that Tk = T and

uk is uniformly bounded in L∞(0, T ;H1
0(Ω)),(3.15)

u′

k is uniformly bounded in L∞(0, T ;L2(Ω)).(3.16)

By a standard discussion, we obtain

u′′

k is uniformly bounded in L∞(0, T ;H−1(Ω)).(3.17)

Hence we can infer from (3.14)-(3.16) that there exists a subsequence of
{uk}, still denoted by {uk}, such that

uk → u weakly star in L∞(0, T ;H1
0 (Ω)),(3.18)

u′

k → u′ weakly star in L∞(0, T ;L2(Ω)),(3.19)

u′′

k → u′′ weakly star in L∞(0, T ;H−1(Ω)).(3.20)

Then using (3.18)-(3.20) and Aubin-Lions lemma we have

uk → u strongly in L2(0, T ;L2(Ω)),(3.21)

which implies

uk → u a.e. in (0, T )× Ω.(3.22)

It follows from (3.22) that

uk log |uk|
2 → u log |u|2 a.e. in (0, T )× Ω,(3.23)

|uk|
2uk → |u|2u a.e. in (0, T )× Ω.(3.24)

Using (3.5) again we can estimate the logarithmic nonlinear term as
∫

Ω

|uk log |uk|
2|2dx = 4

∫

Ω

|uk|
2(log |uk|)

2dx

≤ C|Ω|+ C

∫

Ω

|uk|
6dx

≤ C(‖uk‖
6
H1

0
(Ω) + 1)

≤ C.

That is to say,

uk log |uk|
2 is uniformly bounded in L∞(0, T ;L2(Ω)).

Then there exists some function χ ∈ L∞(0, T ;L2(Ω)) such that

uk log |uk|
2 → χ weakly star L∞(0, T ;L2(Ω)).

In view of (3.23) and Lemma 3.1.5 in [23], we have

χ = u log |u|2,

which implies

(3.25) uk log |uk|
2 → u log |u|2 weakly star L∞(0, T ;L2(Ω)).
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Next we show the convergence of nonlinear term |uk|
2uk. By Sobolev in-

equality, we have
∫

Ω

∣

∣|uk|
2uk

∣

∣

2
dx =

∫

Ω

|uk|
6dx ≤ C‖uk‖

6
H1

0
(Ω) ≤ C.

Then there exists some function χ̃ ∈ L∞(0, T ;L2(Ω)) such that

|uk|
2uk → χ̃ weakly star L∞(0, T ;L2(Ω)).

Using (3.24) and Lemma 3.1.5 in [23], we get

χ̃ = |u|2u,

which concludes

(3.26) |uk|
2uk → |u|2u weakly star L∞(0, T ;L2(Ω)).

Now, using the convergence (3.18)-(3.20), (3.25) and (3.26) we can pass to
the limit in (3.1) to obtain

〈u′′, wj〉+(∇u,∇wj)+ (u,wj)+ (u′, wj)− (u log |u|2, wj)+ (|u|2u,wj) = 0, ∀j.

Since the system {wj}
∞

i=1 is dense in H1
0 (Ω), we have

〈u′′, v〉+ (∇u,∇v) + (u, v) + (u′, v)− (u log |u|2, v) + (|u|2u, v) = 0

for any v ∈ H1
0 (Ω). That is to say u satisfies the equation (1.1) in the weak

sense.
In what follows, we check that u satisfies the initial condition. From (3.18)

and (3.19), we have

uk(0) → u(0) weakly in L2(Ω).

Since we have chosen uk(0) such that

uk(0) → u0 strongly in H1
0 (Ω).

Therefore, we have

(3.27) u(0) = u0.

It can be inferred from (3.21) that

〈u′′

k, wj〉 → 〈u′′, wj〉 in L∞(0, T ),

which implies that
〈u′

k(0), wj〉 → 〈u′(0), wj〉.

Noting that
u′

k(0) → u1 strongly in L2(Ω),

then we have

(3.28) u′(0) = u1.

As a consequence of (3.27) and (3.28), the initial condition is satisfied. There-
fore, the global existence of weak solutions to the problem (1.1) is established.
Then the proof of Theorem 2.1 is complete.
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