• Title/Summary/Keyword: Nonlinear sampled-data system

Search Result 29, Processing Time 0.022 seconds

Discrete Representation Method of Nonlinear Time-Delay System in Control

  • Park, Ji-Hyang;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.327-332
    • /
    • 2003
  • A new discretization method for nonlinear system with time-delay is proposed. It is based on the well-known Taylor series expansion and the zero-order hold (ZOH) assumption. We know that a discretization of linear system can be obtained with the ZOH assumption and within the sampling interval. A similar line of thinking is available in nonlinear case. The mathematical structure of the new discretization method is explored and under the structure, the sampled-data representation of nonlinear system including time-delay is computed. Provided that the discrete form of the single input nonlinear system with time-delay is derived, this result is easily extended to nonlinear system with multi-input time-delay. For simplicity two inputs are considered in this study. It is enough to generalize that of multiple inputs. Finally, the time-discretization of non-affine nonlinear system with time-delay is investigated for apply all nonlinear system

  • PDF

Effective Decentralized Sampled-Data Control for Nonlinear Systems in T-S' Form: Overlapping IDR Approach (타카기-수게노 형태의 비선형 시스템의 효율적 분산 샘플치 제어: 중복 지능형 디지털 재설계 접근법)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.94-99
    • /
    • 2012
  • This paper discusses a decentralized sampled-data control problem for large-scale nonlinear systems. The system is represented in Takagi-Sugeno's form. Next, we design a decentralized analog controller based on the overlapping decomposition technique. The final step is to apply the intelligent digital redesign scheme for converting the analog controller into the sampled-data one. Design condition is represented in terms of linear matrix inequalities. A simulation result is provided for the effectiveness of the proposed design method.

Sampled-data Control for Lur'e Dynamical Systems (루에 동적 시스템을 위한 샘플데이타 제어)

  • Liu, Yajuan;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.261-265
    • /
    • 2014
  • This paper studies the problem of the sampled-data control for Lur'e system with nonlinearities. The nonlinearities are expressed as convex combinations of sector and slope bounds. It is assumed that the sampling periods are arbitrarily varying but bounded. By constructing a new augmented Lyapunov-Krasovskii functional which have an augmented quadratic form with states as well as the nonlinear function, the stabilizing sampled-data controller gains are obtained by solving a set of linear matrix inequalities. The effectiveness of the developed method is demonstrated by numerical simulations.

Time-Discretization of Delayed Multi-Input Nonlinear System Using A new algorithm

  • Qiang, Zhang;Zhang, Zheng;Kim, Sung-Jung;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.89-91
    • /
    • 2007
  • In this paper, a new approach for a sampled-data representation of nonlinear system that has time-delayed multi-input is proposed. That is largely devoid of illconditioning and is suitable for any nonlinear problem. The new scheme is applied to nonlinear systems with two or three inputs; and then the delayed multi-input general equation is derived. The method is based on thematrix exponential theory. Itdoes not require excessive computational resources and lends itself to a short and robust piece of software that can be easily inserted into large simulation packages. A performance of the proposed method is evaluated using a nonlinear system with time-delay: maneuvering an automobile.

  • PDF

Time Discretization of the Nonlinear System with Variable Time-delayed Input using a Taylor Series Expansion

  • Choi, Hyung-Jo;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2562-2567
    • /
    • 2005
  • This paper suggests a new method discretization of nonlinear system using Taylor series expansion and zero-order hold assumption. This method is applied into the sampled-data representation of a nonlinear system with input time delay. Additionally, the delayed input is time varying and its amplitude is bounded. The maximum time-delayed input is assumed to be two sampling periods. Them mathematical expressions of the discretization method are presented and the ability of the algorithm is tested for some of the examples. And 'hybrid' discretization scheme that result from a combination of the ‘scaling and squaring' technique with the Taylor method are also proposed, especially under condition of very low sampling rates. The computer simulation proves the proposed algorithm discretized the nonlinear system with the variable time-delayed input accurately.

  • PDF

Time Discretization of Nonlinear System with Variable Time-delay Input Using Taylor Series Expansion (Taylor series를 이용한 시변 지연 입력을 갖는 비선형 시스템의 이산화)

  • Choi Hyung Jo;Park Ji Hyang;Lee Su Young;Chong Kil To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • A new discretization algorithm for nonlinear systems with delayed input is proposed. The algorithm is represented by Taylor series expansion and ZOH assumption. This method is applied to the sampled-data representation of a nonlinear system with the time-delay input. Additionally, the delay in input is time varying and its amplitude is bounded. The maximum time-delay in input is assumed to be two sampling periods. The mathematical expressions of the discretization method are presented and the ability of the algorithm is tested for some of the examples. The computer simulation proves the proposed algorithm discretizes the nonlinear system with the variable time-delay input accurately.

Takagi-Sugeno Fuzzy Sampled-data Filter for Nonlinear System (비선형 시스템을 위한 Takagi-Sugeno 퍼지 샘플치필터)

  • Kim, Ho Jun;Park, Jin Bae;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.349-354
    • /
    • 2015
  • This paper presents the stability conditions of the Takagi-Sugeno (T-S) fuzzy sampled-data filter. The error system between the T-S fuzzy system and fuzzy filter is presented. In the sense of the Lyapunov stability analysis, the stability conditions are given, which can be represented in terms of linear matrix inequalities (LMIs). The proposed stability conditions utilize the different approach from the conventional methods, and have better performance than that of the conventional ones. The simulation example is given to show the effectiveness of the proposed method.

Time-Discretization of Non-Affine Nonlinear System with Delayed Input Using Taylor-Series

  • Park, Ji-Hyang;Chong, Kil-To;Kazantzis, Nikolaos;Parlos, Alexander G.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1297-1305
    • /
    • 2004
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sampled-data representation of a non-affine nonlinear system with constant input time-delay. The mathematical expressions of the discretization scheme are presented and the ability of the algorithm is tested for some of the examples. The proposed scheme provides a finite-dimensional representation for nonlinear systems with time-delay enabling existing controller design techniques to be applied to them. For all the case studies, various sampling rates and time-delay values are considered.

Robust H(sup)$\infty$ FIR Sampled-Data Filtering for Uncertain Time-Varying Systems with Lipschitz Nonlinearity

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.255-261
    • /
    • 2000
  • This paper presents the results of the robust H(sub)$\infty$ FIR filtering for a class of nonlinear continuous time-varying systems subject to real norm-bounded parameter uncertainty and know Lipschitz nonlinearity under sampled measurements. We address the problem of designing filters, using sampled measurements, which guarantee a prescribed H(sub)$\infty$ performance in continuous time-varying context, irrespective of the parameter uncertainty and unknown initial states. The infinite horizon causal H(sub)$\infty$FIR filter are investigated using the finite moving horizon in terms of two Riccati equations with finite discrete jumps.

  • PDF

Time-Discretization of Nonlinear Systems with Time Delayed Output via Taylor Series

  • Yuanliang Zhang;Chong Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.950-960
    • /
    • 2006
  • An output time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via a digital computer. A new method for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed in this paper. This method is applied to the sampled-data representation of a nonlinear system with a constant output time-delay. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. In addition, 'hybrid' discretization schemes resulting from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. A performance of the proposed method is evaluated using two nonlinear systems with time-delay output.