• Title/Summary/Keyword: Nonlinear phase

Search Result 1,078, Processing Time 0.023 seconds

A study on the Nonlinear Normal Mode Vibration Using Adelphic Integral

  • Huinam Rhee;Kim, Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1922-1927
    • /
    • 2003
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6$\^$th/ order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.

A Nash Solution to Predictive Control Problem for a Class of Nonlinear Systems

  • Ahn, Choon-Ki;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.76.5-76
    • /
    • 2002
  • In this paper, we provide a Nash solution to predictive control problem for nonminimum phase singular nonlinear systems. Until now, there is no result on predictive control problem for this class of nonlinear systems. Chen's recent work considered predictive control problem for a class of nonlinear systems with ill-defined relative degree. Since his work is not a result considered in the feedback linearization framework, there is no a result on singular probem in his paper. In contrast to the existing predictive control result, our work considers two main obstacles (singularity and nonminimum phase) in the feedback linearization framework. For a generally formu...

  • PDF

Measurement of the Nonlinear Optical Properties by use of the Far-Field Phase Modulation Method (Far-field 위상 변조량 측정법을 이용한 광학매질의 비선형 특성 측정)

  • 김성훈;양준목;김용평;이영우;신동주;정영붕
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.168-174
    • /
    • 1998
  • We have measured nonlinear refractive index and nonlinear absorption coefficient of optical materials by using a far-field phase modulation technique. The phase variation of the probe beam in the nonlinear material is transformed into the spatial phase modulation in the far-field so that the spatial distribution of the optical intensity in conjunction with the computer simulation analysis can give the nonlinear optical constants. We have obtained the nonlinear refractive indices and nonlinear absorption coefficient of $CS_2$ and $BaF_2$ by fitting the experimental values and numerical simulation analysis of far-field measurements. The nonlinear refractive indices of $CS_2$ and $BaF_2$were obtained as $1.2{\times}10^{-11}$ esu and $1.0{\times}10^{-13}$ esu, respectively at 616 nm, and the nonlinear absorption coefficient of BaF$_2$as $5.0{\times}10^{-11}$cm/W at 308nm. These measured values were in good agreement with previous reports.

  • PDF

AN OPTIMIZATION APPROACH FOR COMPUTING A SPARSE MONO-CYCLIC POSITIVE REPRESENTATION

  • KIM, KYUNGSUP
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.225-242
    • /
    • 2016
  • The phase-type representation is strongly connected with the positive realization in positive system. We attempt to transform phase-type representation into sparse mono-cyclic positive representation with as low order as possible. Because equivalent positive representations of a given phase-type distribution are non-unique, it is important to find a simple sparse positive representation with lower order that leads to more effective use in applications. A Hypo-Feedback-Coxian Block (HFCB) representation is a good candidate for a simple sparse representation. Our objective is to find an HFCB representation with possibly lower order, including all the eigenvalues of the original generator. We introduce an efficient nonlinear optimization method for computing an HFCB representation from a given phase-type representation. We discuss numerical problems encountered when finding efficiently a stable solution of the nonlinear constrained optimization problem. Numerical simulations are performed to show the effectiveness of the proposed algorithm.

Image Authentication Using Only Partial Phase Information from a Double-Random-Phase-Encrypted Image in the Fresnel Domain

  • Zheng, Jiecai;Li, Xueqing
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.241-247
    • /
    • 2015
  • The double-random phase encryption (DRPE) algorithm is a robust technique for image encryption, due to its high speed and encoding a primary image to stationary white noise. Recently it was reported that DRPE in the Fresnel domain can achieve a better avalanche effect than that in Fourier domain, which means DRPE in the Fresnel domain is much safer, to some extent. Consequently, a method based on DRPE in the Fresnel domain would be a good choice. In this paper we present an image-authentication method which uses only partial phase information from a double-random-phase-encrypted image in the Fresnel domain. In this method, only part of the phase information of an image encrypted with DRPE in the Fresnel domain needs to be kept, while other information like amplitude values can be eliminated. Then, with the correct phase keys (we do not consider wavelength and distance as keys here) and a nonlinear correlation algorithm, the encrypted image can be authenticated. Experimental results demonstrate that the encrypted images can be successfully authenticated with this partial phase plus nonlinear correlation technique.

An Integral-Augmented Nonlinear Optimal Variable Structure System for Uncertain MIMO Plants

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.1-14
    • /
    • 2007
  • In this paper, a design of an integral augmented nonlinear optimal variable structure system(INOVSS) is presented for the prescribed output control of uncertain MIMO systems under persistent disturbances. This algorithm basically concerns removing the problems of the reaching phase and combining with the nonlinear optimal control theory. By means of an integral nonlinear sliding surface, the reaching phase is completely removed. The ideal sliding dynamics of the integral nonlinear sliding surface is obtained in the form of the nonlinear state equation and is designed by using the nonlinear optimal control theory, which means the design of the integral nonlinear sliding surface and equivalent control input. The homogeneous $2{\upsilon}(\kappa)$ form is defined in order to easily select the $2{\upsilon}$ or even $(\kappa)-form$ higher order nonlinear terms in the suggested sliding surface. The corresponding nonlinear control input is designed in order to generate the sliding mode on the predetermined transformed new surface by means of diagonalization method. As a result, the whole sliding output from a given initial state to origin is completely guaranteed against persistent disturbances. The prediction/predetermination of output is enable. Moreover, the better performance by the nonlinear sliding surface than that of the linear sliding surface can be obtained. Through an illustrative example, the usefulness of the algorithm is shown.

  • PDF

THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF A PHASE-FIELD MODEL FOR ANISOTROPIC INTERFACIAL ENERGY

  • Kim, Jun-Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.453-464
    • /
    • 2007
  • A computationally efficient numerical scheme is presented for the phase-field model of two-phase systems for anisotropic interfacial energy. The scheme is solved by using a nonlinear multigrid method. When the coefficient for the anisotropic interfacial energy is sufficiently high, the interface of the system shows corners or missing crystallographic orientations. Numerical simulations with high and low anisotropic coefficients show excellent agreement with exact equilibrium shapes. We also present spinodal decomposition, which shows the robustness of the pro-posed scheme.

Output Feedback Stabilization of Non-Minimum phase Nonlinear Systems (비최소위상 비선형 시스템의 출력궤환 안정화)

  • 조남훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.977-983
    • /
    • 2003
  • An output feedback stabilizing controller far non-minimum phase nonlinear systems is presented. We first perform the standard input-output linearization of the system and then transform the zero dynamics into a special normal form in which the antistable part is not affected by the stable part and the antistable part is given in approximately linear form. Under the assumption that the nonlinear system satisfies the observability rank condition, we can design an observer f3r the extended system that is made of the augmentation of a chain of integrators. The proposed output feedback stabilizing controller can then be designed by combining the observer and the state feedback controller.

Wideband Optical Phase Conjugator using HNL-DSF in WDM Systems with Path-Averaged Intensity Approximation Mid-Span Spectral Inversion (경로 평균 강도 근사 기법의 MSSI를 채택한 WDM 시스템에서 HNL-DSF를 갖는 광대역 광 위상 공액기)

  • Lee, Seong-Real;Lee, Yun-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.14-21
    • /
    • 2003
  • We investigated the optimum pump light power compensating distorted WDM signal due to both chromatic dispersion and self phase modulation (SPM). The considered system is $3{\times}40$ Gbps intensity modulation direct detection (IM/DD) WDM transmission system with path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) as compensation method. This system have highly nonlinear dispersion shifted fiber (HNL-DSF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that HNL-DSF is an useful nonlinear medium in OPC for wideband WDM transmission, and the excellent compensation is obtained when the pump light power of HNL-DSF OPC was selected to equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length. By this approach, it is verified the possibility to realize a long-haul high capacities WDM system by using PAIA MSSI compensation method, which have HNL-DSF OPC with optimal pump light power depending on transmission length.

  • PDF

A NONLINEAR CONVEX SPLITTING FOURIER SPECTRAL SCHEME FOR THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE ENERGY

  • Kim, Junseok;Lee, Hyun Geun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.265-276
    • /
    • 2019
  • For a simple implementation, a linear convex splitting scheme was coupled with the Fourier spectral method for the Cahn-Hilliard equation with a logarithmic free energy. However, an inappropriate value of the splitting parameter of the linear scheme may lead to incorrect morphologies in the phase separation process. In order to overcome this problem, we present a nonlinear convex splitting Fourier spectral scheme for the Cahn-Hilliard equation with a logarithmic free energy, which is an appropriate extension of Eyre's idea of convex-concave decomposition of the energy functional. Using the nonlinear scheme, we derive a useful formula for the relation between the gradient energy coefficient and the thickness of the interfacial layer. And we present numerical simulations showing the different evolution of the solution using the linear and nonlinear schemes. The numerical results demonstrate that the nonlinear scheme is more accurate than the linear one.