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A study on the Nonlinear Normal Mode Vibration Using
Adelphic Integral

Huinam Rhee*
School of Mechanical and Automotive Engineering, Sunchon National University,
315 Maegok-dong Sunchon, Junnam 540-742, Korea
Jeong-Soo Kim
Satellite R&D Division Korea Aerospace Research Institute,
45 Eoeun-Dong, Yuseong-Gu, Daejeon 305-333, Korea

Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system,
which has 6™ order homogeneous polynomial as a nonlinear term, is studied in this paper. The
existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase

space. In order to find the analytic expression of the invariant curves in the Poincare Map, which

is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space,
Whittaker’s Adelphic Integral, instead of the direct integration of the equations of motion or the
Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is
revealed that the integral of motion by Adelphic Integral is essentially consistent with the one
obtained from the B-G transformation method. The resulting expression of the invariant curves
can be used for analyzing the behavior of NNM vibration in the Poincare Map.
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1. Introduction

The existence, bifurcation, and the orbital sta-
bility of periodic motions, which is called non-
linear normal mode, in a nonlinear dual mass
Hamiltonian system, which has 6™ order homo-
geneous polynomial as a nonlinear term as shown
in Fig. 1, are under consideration in this paper. In
the previous work (Rhee, 1999) the dynamical
structure of the same oscillator, was investigated
by picturing the Poincare Map, which is a map-
ping of a phase trajectory onto 2 dimensional
surface in 4 dimensional phase space, by direct
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integration of the equations of motion, and also
by generating an approximation for the Poin-
care Map via Birkhoff-Gustavson (Birkhoff, 1927,
Gustavson, 1963 ; Month et. al., 1980) canonical
transformation (Arnold, 1978) for small values of
energy. In that work, particularly, the existence
and the stability of Nonlinear Normal Mode was
studied, and it was found that the system has 2 or
4 Similar Nonlinear Normal Modes depending
on the values of the nonlinear parameter k. The
bifurcating modes enter as stable while the mode
from which they bifurcated changes from condi-
tion to unstable condition.

In this paper, in order to find the analytic
expression of the invariant curves in the Poincare
Map, Whittaker’s Adelphic Integral (Whittaker,
1989), instead of the direct integration of the
equations of motion, or the Birkhoff~Gustavson
canonical transformation, is derived for small
value of energy. We will show that although the
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calculation process is so much complicated, the
resulting integral of motion obtained by Adelphic
Integral is consistent with the one obtained from
the B-G transformation method.

2. Whittaker’s Adephic
Integral and Relationship with
Birkhoff-Gustavson’s Integral

The method using Adelphic Integral, was deve-
loped by Whittaker {Whittaker, 1989), and starts
with a canonical transformation which is defined
in terms of action-angle variables. This method
is based on the fact that the Poisson bracket of
any integral ¢ and the Hamiltonian H equals
zero. The resulting integral ¢ is known as Adel-
phic integral. Whittaker has divided the method
into different cases. The cases arise from problems
associated with internal resonance. In this method
zero divisors are associated with internal res-
onances. Because the system shown in Fig. | has
a 1:1 internal resonance, we will consider only
internal resonance case in this paper.

Let us begin with a generalized form of Ha-
miltonian as follows:

H(u, v)=HQ2) (u, v) +H(3) (u, v)

+H(4) (u, v)+- )

where the quadratic term is of the form H (2)
n

(u, v) =23 (adui+03)/2, and H(3) and H(4)
are cubic ;nd quartic polynomials of % and v,
respectively.

We can easily transform from (%, v) to (x, y)
used in the previous work (Rhee, 1999), with the

following canonical transformation ;
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Fig. 1 Nonlinear oscillator which has a 5% order
nonlinearity in stiffenss

1923

uv:xu/a'llz

" (2)
Vp=Q""Yv
First, we define canonical transformation from

(u, v} to (Q, P);
u=02Q)"?a Y cos P (3a)
v=_20Q)"sin P (3b)

The variables @ and P are known as action-
angle variables (Arnold, 1979 ; Whittaker, 1989 ;
Goldstein, 1950). From the inverse transforma-
tion of Eq. (3), we see that the action variables §
corresponds to amplitude and the angle variable
P corresponds to the polar angle locating the
trajectory in the (%, v) phase space.

Let us assume the system has two degree of
freedom. In terms of the new variables (@, P),
H(2) (u, v) becomes

H2)(Q, P =(a@Qi+aQ) (4)

and H(s) (2, v) becomes a sum of terms pro-
ceeding in powers of QI and @Q}* and in
trigonometric functions of multiples of P, and F;;
that is, terms of the type

2N cos (ipi+ipe), s=m+n (5)

where m and #» are nonnegative integers, and
m-| i), u-] ;| are zero or an even integer.

We call s=m+#n the order of the term. The
general form of H(6) (Q, P) is as follows :

QR (Yi+ Ys cos 2P+ Ya cos 4P+ Yi cos 6P,)

+0i7Q7{ Vi cos (P4 P) + Ys cos(A—B)
+ Yrcos (3P +P) + Yscos 3P — D)
+ Yo cos(SP+P) + Yiocos (SP—Py)}
+ @@ { Yu+ Yiz cos 2P+ Vis cos 2R,
+ Yucos2P+2R) + Yis cosQP—2P)
+ Yis cos 4P+ Yoz cos (4P +21)
+ Yigcos (4P —2P)}

+Q Qo { Viocos(P+B) + Yocos(A~B)  (6)
+Yucos(3P+R) + Yo cos BP—P)
+ Yas cos (P +3Py) + Yo cos (B—3P)
+ Yas cos (3P +3R) + Yas cos(3P,—3Py)}
+ Qi { Yu+ Yas cos 2P+ Yoy cos 25
+ Yao cos (2P 42B,) + Ya1 cos QP —2P)
+ Yz cos 4P+ Yas cos 2P +4R)
+ Yascos (2P, —4P) }
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+Qr Q7 { Yis cos (Pt P) + Yag cos (Pi—P)
+ Yo cos(P,+3Py) + Y cos (P—3P)
+ Yo cos (P+5P) + Yo cos (P~ 5P}
+ @& (Ya+ Y cos 28+ Yis cos 4P+ Vas cos 65)

where Y,'s are coefficients.
If $(Q, P) =const. is an integral we must have

d¢ 82 0 + 8¢ p
ﬁ.a_H_iéifi
0Q 0P 0P 0Q

where tildes are omitted for convenience.

The notation in Eq. (7) is referred as the
Poisson bracket. We expand Eq. (7) and equate
terms of equal order. For example, if H=H (2) 4

H (6) then from the Eq. (7) we have
(¢(2) +¢(4) +8(6) +6(8) +¢(10) +

)
(¢, H)=0

HQ+H(6)) = ®
Equating terms of equal order, we have

(4(2), H(2)) =0 (9a)

(¢(4), H(2))=0 (9b)

(¢(6), H(2))=—(4(2), H(6)) (9¢)
(¢(8), H(2))=—(¢(4), H(6)) (9d)
(¢(10), H(2))=—(¢(6), H(6)) (9e)
It is noted from Eq. (9a) that
04(2) 94(2)

@~5p +a B =0 (10)
Let us assume
$(2) =t — Q- (1)
which certainly satisfies Eq. (10), and
$(4)=9¢@8)=

which satisfies Egs. (9b) and (9¢).
Substituting Eq. (11) into Eq. (9¢), we have

3¢ (6) N dp(6)  dH(6) dH (6)
43 oP; [72} P = oP; 73] FJ2)

(12)

This implies that to any term A cos ({P+/P,) in
H (6) there corresponds a term {(ion—jon/ion+
ja)} A cos(GRi+jP) in ¢(6).

Therefore, we can state the general form of ¢ as
follows :
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$=602) +4(6) 4+
=0 Q- mt+Q  Yocos 2P+ Y cos 4P+ Vi cos 6B)
0102 E ; w(P+B) + E“‘”’; Troos(R-B)
(3a1 ) Bota)
(alm) cwsBRHR)+ e ——Yicos(3A-P)
((Ix @) (St
ey b bRE o (SRR
G| Yacos 2Pt Yiscos 2P+ E ;YIACOS<2P1+2PZ)
(MHHZ) Vs cos(2P—28R) + Vs cos 4P,
(201 202)
(4a1 ) (4mtle)
et Yo cos (4P H2R) + el v lscs4R-2P)
+oRod E ;ch (A+R)+ E‘“‘h; aes(A-B)  (13)
T T LA B
(o& ) [
( i) Yacos(R+3B) + latle) Yucos(A-3P)
(m +3a) (@=3a)
Ba—3a) (01+302)
Jr(3 ) Yiscos 3P +3R) + i Y cos (3P-3P)
+ QB Yicos 2P— Vo cos 2B+ g >Yy,cos(2P1+2P)

(lat2e)

4 EZ‘”Z“Z; Vo cos2P2P) Vo cos 4B
( ~4g) {a+4a)
(20‘ o s QPR + Tata) Ty us2R—4P)
+0¥03 ; (P + E‘“"Z; Vo cos(P-P)
( -3a) (@t3e)
< T ——Yacos(B+3P) + (o 3@) ——Yucos(P-3R)
( ~5m) (@+5e)
(1+5 o ———Yues(P+5P)+ e ———Yoos(A-5)

+ @B~ Yucos 2P Yiscos 4P~ Y cos 6P) ++

It should be noted that the Adelphic integral in
Eq. (13) is well defined if we have no internal
resonance. However, the system considered in this
paper has internal resonance (m1=am=1), so we
have zero divisors in the expression of ¢. That is,

we obtain ¢=¢(2) +%+-“, but ¢(6) has
terms with vanishing denominators, D=0. The
first integral in this case becomes ¢=¢(6)+
#(10) +---, where ¢(6) consists of those terms

that contributed to D=0, neglecting arbitrary
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constants. Therefore,

$(6)=QQ Vs cos(P—P) + Q8u Vs cos 2P—2P)
+Q1%Qz%{ Yu cos (P+P) + Vi cos(3P—3P)) (14)
+QuQ} Y cos (2Pi—2Py) + Qi2Qs? Vg cos (Pi— )

If £(Q, P) +———g<% P)

tegral, then multiplying by g and taking the
limit, as ¢ — 0, y — ©© we can obtain g (@, P) =
Iir%( 1y) =const as the desired form of the integral
ﬂ—a

=const.=vy is a first in-

when p©=0.
We now add the following terms

QI+ CRIQ+ G Q3+ CR

which is the complementary solution of Eq. (12),
to ¢(6) and determine the arbitrary constants
Ci, Cs, Cs and Cq by requiring that terms with
vanishing denominators disappear from higher
order term of ¢.

Therefore, ¢(6) becomes as follows :

$16)=Qi2Qu1 Vs cos (P P) + Q8 Vis cos (2P, —2P)
+Q1%ng{ Y cos(P—Py) + Yas cos (3P ~3Py)} (

+ QIQ% Yai cos (2P1‘2P2) + QI%QZ% a6 cos (P1 - Pz)
+ 05+ Gt G+ i

15)

To solve for the constants Ci, Co, Cs and Cy, it is
required that by Eq. (9e)

(¢(10), H(2))=—(Q(6), H(6))

where ¢(6) is given by Eq. (15).
First, we expand the right hand side of Eq. (9e)

ap(6) dH(6) dp(6) H(6)
Q. oR 0P, 0t
op(6) dH(6) 0¢(6) 0H (6)
060, 0P oF, 0@,

(16)

+

and find the coefficients of the terms that contrib-
ute to sin(A—PB), sinQP,—2PB), sin(3P—
3P,), +, and then require them vanish.

Finally, we find

C1=C4:C,

Co=Cs=3C— (17)

(5/4) (+1)+(15/4)

Thus, Whittaker’s Adelphic integral for our
nonlinear oscillator is

$=9(6)

(~5/2) Q702 cos( = B) +(5/2) Qs cos(2P—2P)
+(=15/2) Q242 cos( B~ B) —(5/6) Qi cos (3R ~3B) (18)
+(5/2) Quk cos2P-2P) - (5/2) Qe Qst cos(P— By

+ G+ CRQRCQGETCQE

where Ci, Cs, C; and C; are related by Eq. (17)
and the constants Ys, Yis, Yz0, Ya1, and Yae are
obtained by the Hamiltonian

=(1/2) (u1+v1+uz+vz> (k/6) (uf+u3>

+(1/6) (m—u2) ®

In order to write ¢ in terms of the original
coordinates (u, v), we use the inverse transfor-
mation

(19)

tan P=v/u
Q= (u*+v%/2
Thus we obtain

d={=5/16){(uf+ v} +3(ub+) (B + 0D + (s +0D)?)
Xttt v10)

+(5/16) (u+ vi+ g+ o) + (ud— o) (i —od)

+(5 /4)(u1+vl+uz+vz) i1l (20)
+(—=5/48) (= 3008) (13— 310008) + Guidv—v]) (udvo— 1)}
+HC/D{(wd+ D+ (g +1d)°)
+(1/32) (12C—5k+10) (b + o) (s +03) (a4 v+ 1 +03)

It is noted that if we compare the above equa-
tion to Eq. (29) in the reference (Rhee, 1999),
we see that if C=(5/12) (k+1) then Whitta-
ker’s Adelphic integral (¢,) and Birkhoff-Gus-
tavson’s (@s-¢) integrals are identical. Therefore,
if we take C=A+(5/12) (£+1) so that A=0 cor-
responds to ¢»=¢s_c. Then, it can be seen that

Bo= ot A+ [ (uh+ oD + (15 + 0D I

which means that
pu=0s-cTALH® (u, v)]* (21)

Thus ¢u» and ¢s-¢ differ to O(6) by a cubic
function of the Hamiltonian.

We can construct the analytic expression of the
invariant curves in the Poincare Map by com-
bining the integral of motion in Eq. (20) with
the Hamiltonian in Eq. (19) as discussed in the
reference (Rhee, 1999). The detailed procedure to
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calculate the expression is omitted in this paper.
Using the resulting analytic expression we can

G4

0.4

{c) h=0.1, k=—1
Fig. 2 Invariant curves in the Poincare Map cal-
culated using the integral of motion

easily construct the Poincare Map. As can be seen
in the figures in the reference (Rhee, 1999), the
analytic expression represents essentially identi-
cal invariant curves compared to the Poincare
Map obtained by the direct integration of the
equations of motion for small value of energy.
Fig. 2 shows an example of the level lines cal-
culated by Eqgs. (19) and (20). As a result we can
see that the nonlinear dual mass Hamiltonian
system, which has 6" order homogeneous poly-
nomial as a nonlinear term considered in this
paper has 2 or 4 Similar Nonlinear Normal
Modes depending on the values of the nonlinear
parameter k. The bifurcating modes enter as sta-
ble while the mode from which they bifurcated
changes from stable condition to unstable condi-
tion.

3. Conclusions

Nonlinear normal mode vibration, in a non-
linear dual mass Hamiltonian system, which has
6" order homogeneous polynomial as a non-
linear term, is studied in this paper. In order
to find the analytic expression of the invariant
curves in the Poincare Map, Whittaker’s Adelphic
Integral, instead of the direct integration of the
equations of motion or the Birkhoff-Gustavson
canonical transformation, is derived for small
value of energy. It is revealed that the integral
of motion by Adelphic Integral is essentially
consistent with the one obtained from the B-G
transformation method. They differ to the order
of 6 by a cubic function of the Hamiltonian. The
resulting expression of the invariant curves can be
used for analyzing the behavior of NNM vibra-
tion in the Poincare Map. It can be clearly seen
that the system considered in this paper has 2 or
4 Similar Nonlinear Normal Modes depending
on the values of the nonlinear parameter. The
bifurcating modes are stable while the mode from
which they bifurcated changes from stable condi-
tion to unstable condition.
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