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ABSTRACT. The phase-type representation is strongly connected with the positive realization
in positive system. We attempt to transform phase-type representation into sparse mono-cyclic
positive representation with as low order as possible. Because equivalent positive representa-
tions of a given phase-type distribution are non-unique, it is important to find a simple sparse
positive representation with lower order that leads to more effective use in applications. A
Hypo-Feedback-Coxian Block (HFCB) representation is a good candidate for a simple sparse
representation. Our objective is to find an HFCB representation with possibly lower order,
including all the eigenvalues of the original generator. We introduce an efficient nonlinear
optimization method for computing an HFCB representation from a given phase-type represen-
tation. We discuss numerical problems encountered when finding efficiently a stable solution of
the nonlinear constrained optimization problem. Numerical simulations are performed to show
the effectiveness of the proposed algorithm.

1. INTRODUCTION

The positive realization problem has been independently studied in the system theory and
probability theory communities [1, 2, 3, 4]. The phase-type representation (so called, posi-
tive representation) is strongly connected with the positive realization in system theory [5].
The relation between the Laplace-Stieltjes transform (LST) of a probability distribution and
a corresponding phase-type representation is similar to that between a transfer function and a
corresponding state space realization.

Because equivalent positive representations of a given phase-type(PH) distribution are non-
unique [6], finding smaller and simpler matrix representations for PH-distributions has become
an important theoretical and practical issue. In modeling and simulation applications, the im-
portance of simple sparse representations comes from the fact that the computational complex-
ity of PH-distributed random-variate generation depends on the representation [7, 8]. Finding
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smaller, simpler and structured representations with lower order can lead to more effective use
of PH-distribution random number generators in stochastic modeling and simulation.

There are some important approaches for minimal and specially structured positive realiza-
tion such as the triangular, bi-diagonal, mono-cyclic, and uni-cyclic representations [5, 9].
Every phase-type distribution has a mono-cyclic representation with larger order [9]. The
mono-cyclic representation is a natural extension of a generator with a bi-diagonal matrix. The
mono-cyclic representations are referred to as feed-back Erlang representations (or feed-back
Coxian representations) due to their structures [9]. We introduce a Hypo-Feedback-Coxian
Block (HFCB) representation covering Erlang, Coxian, Feedback Erlang (FE) and Feedback
Coxian (FC) representations. These approach can be applied to the sparse positive realization
of positive system since it has the same structure [3, 5]. Similar constructive methods of simple
compact positive realizations for general transfer functions have been extensively discussed in
the positive system [2, 4, 10, 11]. The main objective of this paper is to compute an HFCB
positive representation with a lower order using nonlinear optimization method.

Finding the roots of polynomials is an important task for finding a proper HFCB representa-
tion. A coefficient relation function between the roots and coefficients of a polynomial can be
used to find all of the roots of a given polynomial simultaneously and in parallel, instead of us-
ing a deflation method finding the roots one by one such as Laguerre’s and Newton-Raphson’s
[12]. A constrained nonlinear optimization problem computing a sparse mono-cyclic represen-
tation is formulated by using coefficient relation function. We discuss the numerical method to
find a optimal solution of the constrained nonlinear optimization problem depending on how
to choose an initial value.

The rest of this paper is organized as follows. Section 2 provides some relevant background
material, including definitions and preliminary results. In Section 3, various structured phase-
type representations classified into acyclic and cyclic forms and their properties are considered.
Numerical optimization methods for finding a sparse mono-cyclic representation with possibly
small order are discussed in Section 4. The numerical experiments are presented in Section 5.
Finally, Section 6 concludes the paper.

2. PHASE-TYPE DISTRIBUTIONS

Before proceeding, we introduce some basic notations. An n X n non-negative matrix A
is denoted by A > 0 if its entries are non-negative and at least one entry is positive. A strict
positive matrix A = [a;;] is denoted A > 0 if all entries a;; > 0. We discuss the phase-
type distribution for a non-negative random variable X in terms of a continuous-time Markov
process. A continuous-time Markov process is defined on an n + 1 finite state space. The row
vector « gives the initial probability vector. A phase-type (PH) distribution is defined as the
distribution of the time needed for absorption in a Continuous-Time Markov Chain (CTMC)
with one absorbing state. If the n+ 1 state is an absorbing state and all other states are transient,
the infinitesimal generator matrix of the Markov chain in the form of the augmented matrix
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tuple (T, b, @), called the augmented phase-type representation, can be defined by

_ [T -T1] -
T: 5 b:en 3
h 0] ! 2.1)

a = [Oé 04n+1] )

where 0 refers to the column vector, row vector or matrix with all entries equal to zero in
the case without ambiguity, ey, is a k-th standard basis vector with zeros, except the k-th one,
which is 1, and 1 is the column vector with all entries being one. We can see that a1 = 0
if al = 1, and a1 = 1 — a1 otherwise. PH distributions are commonly represented by
a vector-matrix tuple (o, T') that describes the transient part of the CTMC. The vector-matrix
tuple (o, T') denotes a phase-type representation (or a phase-type generator) of a phase-type
distribution if o and 7" have following properties: T;; < 0, T;; > 0 fori # j, ol <1, a > 0,
and T'1 < 0. Equivalently, a phase-type representation is regarded as the positive realization
(representation) of positive system [5].

The probability density function (PDF), cumulative distribution function (CDF), and Laplace-
Stieltjes Transform (LST) of the PDF, respectively, are defined by

£(2) = acexp(Ta)(~T1)
F(z) =1—aexp(Tz)1l
F*(s) = E(exp(sX)) = a(sI —T)"}(=T1)

where E(X) means an expectation of a random variable X.

The particular structured representation problem has been studied as an important work in
the theory of phase-type representations [5]. Depending on their structures, we can typically
divide a phase-type representation into two classes: an acyclic subclass and a cyclic subclass.
In the concept of graph theory, the acyclic class consists of a vector-matrix pair («, 1), which
the generator 7" represents an acyclic transition graph and « is a positive vector.

The concepts of PH-simplicity and PH-majorization are useful tools in the study of PH-
distributions [6, 13]. For a given 7', PH(T') denotes the set of all distributions with a phase-
type representation (v, T'). For two generators 7" and .S, S is said to PH-majorize T'if PH(T') C
PH(S). T is called by PH-simple if for any different o and f3, (o, T') and (3, T") represent
different distributions. S PH-majorizes 7 if and only if there exists a non-negative matrix P
such that

TP=PS, Pl=1. (2.2)

This means that (o, T') and (aP, S) represent the same phase-type distribution. We note that a
non-negative condition of P is not necessary for the existence of a new phase-type representa-
tion (aP, S). The non-negative condition of P is replaced by a.P > 0.

A multiset is defined by a collection of elements in which certain elements may occur more
than once. Let | A| be the cardinality of A. A multiset AW B denotes an additive union (counting
multiplicities) in multiset such that |[A W B| = |A| + |B)|.
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3. SPECIALLY STRUCTURED POSITIVE REPRESENTATIONS

3.1. Coxian representation. Any PH-distribution with a triangular representation («v,T") has
a bi-diagonal representation (3, S(X)) with the same order. Every phase-type representation
whose LST has only real poles has an ordered Coxian representation with larger order than the
original [13]. By using an optimization method, several algorithms have been introduced for
finding a Coxian generator, S(\) PH-majorizing a PH-generator [14].

We consider the computation problem for PH-majorizing S(\) for a PH-generator (o, T")
such that for a given vector X = (Ay,--- , A), TP = PS(X) and a bi-diagonal matrix S(X)
is defined by

YD YR 0 0
0 =X .- 0 0
SN=|: 1o :
0 0 -+ —Am1 Ami
0 0 - 0 Ay

A spectral polynomial algori‘d—lm for computing a canonical bi-diagonal representation of a
state space representation has been proposed [14]. We assume that all eigenvalues of 71" are
nonzero and real-valued. The spectral polynomial algorithm is given as follows:

(1) Find the descending ordered multiset {—A1, — A2, -+, — A, } including all the eigen-
values (counting multiplicities) of 7.
(2) Letp,, = —=T'1/\,. For 2 < k < m, recursively, set k = k — 1 and compute p; such

that
pr = (Nkt1L + T)prs1/ Ak
(3) Construct the bi-diagonal matrix S(X) for X = (Ay,--- , A,) and 7 X m matrix P =
[pl b2 - pm]-

-

(4) Check that TP — PS(\) =0and 8 = aP > 0.

PH-generators with only real eigenvalues can be transformed into Coxian generators by the
spectral algorithm [14]. By using the spectral polynomial algorithm, a Coxian representation
is induced based on the next theorem.

Theorem 3.1. We assume that a vector-matrix pair («, T) is a PH-generator such that all the
eigenvalues of 7" are real and « > 0. Then, a Coxian representation (3, S(\)) is an equivalent

—

bi-diagonal representation of a vector-matrix pair («,T) such that TP = PS(\), 1 = P1
and 8 = oP.

3.2. Monocyclic positive representation. We attempt to find sparse representations repre-
senting phase-type distributions with complex and real poles. The presence of complex poles
in LST implies the presence of backward transitions in the associated Markov chain. Several
candidates for canonical sparse positive realization, such as feedback Erlang representation
[13], mono-cyclic Coxian representation [9] and unicyclic representation [15, 16], have been
introduced.
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An n x n matrix A is said to be reducible if there exists a permutation matrix P such

. _|B C

that P'AP = 0 D]

Otherwise, A is said to be irreducible . Define F;; be the n x n matrix that has only a one in

the position (7, j) and zeros otherwise. If A is irreducible and for any a;; # 0, A — a;; E;j is

reducible, then A is said to be nearly reducible. Suppose A is an n x n nearly reducible matrix
[17]. Then, there exist permutation matrices P and () and an integer s > 1 such that

where B and D are square matrices and P! is the transpose of P.

A B 0 0
0 A 0 0
PAQ = 3.1
0 o As—1 Bsa
B, 0 0 A |

where each B; has exactly one entry equal to one and each A; is nearly reducible. When all
B;’sare 1 x 1, this is a simplified form for nearly reducible matrices. We note that this form is
a good candidate as a simple sparse representation of a phase-type distribution with complex
poles.

The simplest cyclic representations are obtained by adding a feedback on an Erlang repre-
sentation, which is called a Feedback Erlang (FE) representation or mono-cyclic representation
[16, 9]. A new type of representation can be obtained by adding a feedback to the Coxian rep-
resentation. It is specially denoted as a Feedback Coxian (FC) representation if the transition
matrix of a vector matrix pair can be obtained by adding feedback to the Coxian representation.

Thus, for a given vector X = (A1, -, A) and 0 < z < 1, an FC representation (c, M (X, z))
is defined by
[—A1 A 0 0 ]
0 =X .- 0 0
M) =| ¢t e : (32)
0 0 o _)\mfl )\mfl
[ 2Am 0 - 0 —Am |

We can see that the matrix M (X, z) is a simple nearly reducible matrix.

Lemma 3.2. Let P be a permutation matrix and XN = XP. Then an FC representation
(a, M()N, 2)) has the same eigenvalue multiset.

Proof. The characteristic polynomial p(s) = det(sI — M(X, z)) is given by p(s) = (s +
A)(s+A2) -+ (s + A) — 0 where 0 = zA1 A2 - - - Ay, Since the characteristic polynomial is
independent of the order of the entries of X, the FC representation (o, M (X’ ,z)) has the same
eigenvalue multiset. O
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We can resort X in ascending order representing the given characteristic polynomial. FC rep-
resentations have more free parameters than FE representations. We define a Hypo-Feedback-
Coxian Block (HFCB) representation as a generalized form, covering Erlang, Coxian, FE and
FC block representation.

Definition 3.1. A Hypo-Feedback-Coxian Block (HFCB) representation is defined as a tran-
sient generator having the following structure

My Mj .-~ 0 0
0 My -~ O 0

M=|: & 5 (33)
0 0 - My, M;,
0o 0 - 0 My

where M; is a feedback Coxian M (X, z) or Coxian S()) for each i and M is defined by
M]’f = (—M;)1ey, where eq is the first standard basis vector.

In the above definition, if cyclic M; is an FE, it is denoted by a Hypo-Feedback-Erlang Block
(HFEB) as a special case of HFCB [8]. It has been proven that every phase-type representation
can be transformed into a mixture of HFEB representations [5, 9].

Algorithm 1 A cyclic spectral polynomial algorithm
Input: (o, T")
Output: P and g = aP

(1) Choose an appropriate HFCB generator M such that the eigenvalue multiset of M
includes all eigenvalues of T" counting multiplicities.

(2) Give an initial column vector p,,, = —T'1.

(3) (k 1s defined by the number of nonzero elements of the k-th column of M and c; x is
the (j, k)-th element of M. For a given py, and 1 < k < m, recursively, set k = k — 1
and compute py, as follows

(@) if ¢ = 2,
Pk = (Mer1rd + T)prr1/ e (3.4
(b) if ¢ = 3 and ¢y ke # O,
Pk = (M1 d + TPkt — Chn? k+1Pk+n )/ Che ot 1 (3.5)
(4) Construct P = [p1 p2 -+ DPm)

(5) Finally, check that TP = PM and aP > 0, and return 5 = a.P and P.

We propose a cyclic spectral polynomial algorithm to compute a transform matrix P gener-
ating M from a representation («,T") in Algorithm 1. Finally, check two facts: TP = PM
and P > 0. In the next section, we will discuss how to find an appropriate HFCB generator
M with lower order in the first step in Algorithm 1.
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Theorem 3.3. We assume that a vector-matrix pair («,7T’) is a PH-generator such that all
the eigenvalues of T" are real and complex numbers and o« > 0. Then the matrix P satisfies
that TP = PM and the eigenvalue multiset (counting multiplicities) of T is included all
eigenvalues of the HFCB matrix M in Eq. (3.3) .

Proof. First, we assume that an eigenvalue multiset (counting multiplicities) of 7" is included
in the multiset of eigenvalues of the HFCB matrix M. However, it is postponed how to
find M satisfying the assumption to the next section. A matrix P is computed by Algo-
rithm 1. We will show that we can obtain P such that TP = PM. We have TP =
[Tpl Tpy -+ Tpm_1 Tpm] and set p,, = —T'1. The last column of M has only two
nonzero values. From Algorithm 1, we obtain 7'p,,, = A\—1Pm—1 — AmPm. For 1 < k < m,
since k-th column of M has two or three nonzero elements, we have two cases Tpy.1 =
Chk+1Pk — Mke41Pk+1 t Chtn/ k+1Pk+n’ OF TDpi1 = AP — Agt1Pg+1 in each step. For
the first column of M, we have two cases T'p1 = —A1p1 + Ciqn/ 1P14n’ OF D1 = —Ap1.
Therefore, we can see that TP = PM. O

4. OPTIMIZATION METHOD FOR FINDING A SPARSE HFCB REPRESENTATION

We consider the properties of FE blocks and FC blocks. For a given FE block M (X, z) with
Ai = A > 0 and a constant ), the eigenvalue multiset of M (), z) can be computed explicitly
in a closed form [9].

Lemma 4.1. [9] Assume that we have a real root uy = —\ + Az!/™ and a complex root
11 = a + ib. Then each n-th root py of its characteristic polynomial equation of an FE
representation M (A, z) is simply obtained by

2k 2k
I = —)\(1—2% cos—ﬂ)—i—iz%)\sin—ﬂ 4.1)
m m
for 0 < k < m, where X = (A, -+, A), and the parameters of the representation can uniquely
be determined by
1
A=- <2a—btan1+bcot 1) 4.2)
2 m m
b(tan = t T
, - bltan , Fcot ) (4.3)

2\
for a given p; and an integer m > 2.

For a complex root ;11 = a + b, we can obtain an FE block M (X, z) such that X =
(A,---,A) and z are defined by Egs (4.2) and (4.3). We consider a lower bound problem
of the order of a phase-type generator 7" including a given complex eigenvalue. It is related
to the continuous version of famous Kolmogorov’s remark: “for a fixed integer m, what is the
multiset of all complex numbers that are eigenvalues of an order-n stochastic matrix?” [13].
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Lemma 4.2. [13] Let (o, T") be a generator of phase-type distribution with a maximal real
eigenvalue 1o and with any complex eigenvalue 11y = —a + bi (a > 0). Then the order m of T’
satisfies

b
i < cot (4.4)
a — |po m

It has been shown that a wedge as in (4.4) contains all eigenvalues of 7" using an invariant
polytope argument [13]. By using the result of Lemma 4.2, we can determine the lower bound
of the order of an FC block including p1 because an FC block is regarded as a special case
of a phase-type representation. Since the eigenvalue multiset of FE block computed by using
Lemma 4.1 covers at most two or three eigenvalues of the original matrix 7°, the total order of
M gets larger. On other hand, because FC blocks have more free parameters, we can find an
FC block including more common eigenvalues of 7" than that of FE block. So we can reduce
the total order of M.

The relationship of the roots of a polynomial equation and its coefficients has been studied in
the complex analysis field [18]. It is closely related to a typical theorem of [18], which shows
a connection between the roots of the polynomial and the generator (X ,z) of an FC matrix

M(X, 2).

Lemma 4.3. Assume that a diagonal vector X = (A1, A2, -+, A, Of the mono-cyclic matrix
M(X, z) in (3.2) lies in a circular region whose center is A and a given radius r > 0.

(1) Then, all of the roots {1, - , pm, } of the polynomial equation p(s) = (s + A\1)(s +
A2) -+ (s + Apm) — 6 = 0 lie on or within one of the n circles, which have the common
radius r and whose centers, fi;’s, are given by fi, = —\ + exp(Z£T)(9|1/™, where
0 =2z \Ag- - Ay

(2) If these m circles are mutually external, each circle contains precisely one of the roots
{p1,- -+, um} of the polynomial equation p(s).

(3) If X = E(\y,), then we have |0|/™ < |X|z=, and equality holds if and only if A, = X
for all k.

Proof. Proofs for the first and the second can be shown by using the results of [18]. The
arithmetic mean is larger than or equal to the geometric mean and the equality only holds if
A = A for all k. The third is trivial. ]

Lemma 4.3 shows the connection between {\;} in M(X,z) and the root multiset {z;}
of p(s). With the help of a numerical procedure, we can depict the feasible regions of the
eigenvalues of M (), z) for a given 7.

Example 4.1. By using a random number generator, for given 0 < z < 1 and » > 0, we
generate a random number vector X such that \—r < M < A+rand A = E(\;). We compute
all the roots {1} of the characteristic polynomial p(s) depending on a random number vector
X with respect to z = 0.5 and A = 2. Figure 1 shows a relationship between the eigenvalues
{1} of an FC block M (X, z) and a random number vector X for n. = 5 or n = 6. In Fig. 1,
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*
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(ayn=>5 b)yn==6

FIGURE 1. The location of the eigenvalues {1y }’s of FE, and FC for orders
n=>5andn =6

the green dots, the red dots and the blue dots denote the eigenvalues points corresponding to
08<r<1,112<r <14,and 1.44 < r < 1.8, respectively. The diamond points present
the eigenvalues of an FE block computed by Eq. (4.1).

From Example 4.1, we can predict the moving pattern of the eigenvalues corresponding to
the change of (X, z). We can verify that there will be just one root in each circle with a given
radius 7, remarked in Lemma 4.3. From the simulation, we can see that the eigenvalue points
{p} are distributed to the inside direction from the vertices of the polygons.

An eigenvalue multiset A = {v1,--- ,1,} (counting multiplicities) is a multiset of eigen-
values of T'. An eigenvalue multiset B = {1, - , ptr, } (counting multiplicities) is the mul-
tiset of eigenvalues of the HFCB matrix M. Let 7/ = (v1,--- ,v,) be an eigenvalue vector

such that v; for each ¢ is an eigenvalue of 7. The multiset B must include the eigenvalue
multiset A. An eigenvalue multiset B() = {,ugi), e ,;Af} } (counting multiplicities) denotes
the eigenvalue multiset of an FC block M (X(i), z(i)) for each 1 < ¢ < r. A vector pair
(XD, 2()) denotes a generator matrix of M(X®, 2()) for each 1 < i < r. Let a genera-
tor ¥ = {(AM, 2M) ... (X" 2())} generate the HFCB matrix M. The problem can be
reformulated as follows.

Problem 4.1. Find a generator Y = {(X®), (D) ... (X(")_2("))} to minimize the order of
the HFCB matrix M such that

AcB=4BY (4.5)

i=1

where B(%) is the eigenvalue multiset of M (XD, z()),
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We note that the problem is closely related to the simultaneous root finding problem of a
polynomial [12]. Finding the roots of polynomials is an important task for various areas of
signal processing, such as filter and wavelet design, spectral estimation, phase unwrapping,
and communication. The constrained relation between the roots and coefficients of a polyno-
mial can be used to find all of the roots of a given polynomial simultaneously, instead of using
sequential methods, such as Laguerre’s and Newton-Raphson’s [12]. Since p;(s) the charac-
teristic is polynomial of each FC block matrix M (X, z()), the characteristic function p(s) of
the HFCB matrix M is p(s) = pi(s)p2(s) - - - pr(s).

Lemma 4.4. For any generator (A\(®)_ z2()) ¢ T, assume that B(%) denotes the eigenvalue

multiset (counting multiplicities) of the sub-block M (X(®), z()) of the HFCB matrix M. Then
it satisfies the coefficient relation equations such that each ¢y, is defined by

BT SIS SO
k=1 k=1

b2 2 3 NN = -0P ) =0 (4.6)
k<j i<j

b, 2 (1= 20D A — ()™l =0
for each ") € BO.

Proof. We will show that for given generator T and B, the coefficient relation equations
between roots and coefficients of a polynomial as (4.6) can be defined. The characteristic
polynomial p;(s) = det(sI — M(X®, 2()))) for each i is given by

pi(s) = (s + A)(s + A (s +AR) — 0 (4.7)

where 6 = z(i))\gi) )\g) e )\52. and m; is an order of M (X (). The eigenvalue multiset of
M(X® | 2 is equal to the root multiset of the polynomial p;(s). The polynomial p;(s) can
be rewritten in the form

m;

pi(s) = [[ (s = ul). 4.8)

k=1

All coefficient relation functions ¢;’s can be defined by comparing with coefficients of (4.7)
and (4.8) with respect to (A, 2()) £ ()\gi), o AD 20) and g & (,ugi), ,ug) o iy, re-
spectively. Therefore we can obtain the relation equations, ¢ ’s, between roots and coefficients
of a polynomial, comparing the coefficients induced from the eigenvalue multiset B(?) with the
coefficients of the characteristic polynomial p;(s) of each FC block matrix M (X, z()). [

B is partitioned into a fixed multiset F(*) and a flexible multiset () = B®) — F()_ Let
us set § = (A 2()). For each ("), we define a vector i by i = (uy,--- ,uy) for uy € U?
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and d = || where |A| is defined by the cardinality of A. A free parameter vector X is
defined by X = (Re(d),Im(d)). We define a fixed vector X, = (Re(V),Im(V)), where
V= (v1,--- ,vg) for each v, € F),

For all integers with 1 < k < m;, the coefficient relation functions ¢y, can be defined in the
form, ¢ (X,X.,S). Set ¢ = (¢1,--+ , ¢m,) as in (4.6). The coefficient relation vector function
qg : R" — R™i represents smooth nonlinear functions defined by Eq. (4.6), where 7 is the
dimension of the vector (X, X., ). We formulate a constrained nonlinear optimization problem
to compute an FC block M (X®, 2()) whose eigenvalue multiset includes F (.

Problem 4.2. For each multiset (), find a solution (%, §) of a nonlinear objective function
f (X, S) subject to equation or inequality constraints such that

min  f(X,8)

X,S

st b <X
0<Ss

—

?(X,X.,8) = 0.
for a fixed parameter x. where b; is a lower bound vector, b,, is an upper bound vector, and the
objective function f(X, ) in (4.9) is given by

b

u
Cy

= 4.9
< (4.9)

f(R,8) = —iln)\k. (4.10)
k=1

Now we consider what reasonable constraints are given in the constrained optimization prob-
lem in (4.9). Because M ()\(i), z(i)) and T are phase-type, all the real values of eigenvalues are

negative, i.e., Re(u,(;)) < 0 for any ,u,(j) e B, We can set the upper bounds zero b, = 0 for

the real numbers, because Re(ug)) < 0. The other bounds, b; and b,,, are given in a proper

bound from initial values for the algorithm to be convergence. We can see that the entries @)

are positive and 0 < z(¥) < 1. The upper bound ¢, for X9 are given in an appropriate bound
from initial values.

Remark 4.5. e We can assume that first and second derivatives of the objective functions
and constraints are available because ¢ consists of polynomials.
e We note that roots of the polynomial in (4.8) depend continuously on its coefficients.
That is well-known as the use of Rouche’s Theorem [19]. A small change in the coeffi-
cients of p(s) causes only a small change in the roots of the polynomial.
e Using the result of Lemma 4.4, Problem 4.1 can be reformulated in the form of a
constrained nonlinear optimization problem for the coefficient relation functions with
respect to (X, s) in Problem 4.2. By solving a constrained nonlinear optimization in

Problem 4.2, we find a generator (X(, z()) and /(%) for a fixed F(®.

Our objective is to find a HFCB representation with possible lower order, whose eigenvalue
multiset includes all eigenvalues of 7. We will discuss numerical problems for finding a HFCB
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representation with lower order by using a nonlinear optimization method. Our strategy is
to obtain the optimal solutions by extending some partially known solutions recursively as
follows:

(1) Initially, compute an FE block M (X®, 2()) such that 7 = A B® is nonempty,
using Lemma 4.1.

(2) We choose a target multiset 7 such that A > 7 > F®). Set Fj, = F®)

(3) We choose a new multiset F5(C 7T) corresponding to X, after X. moves a little and
solve Problem 4.2 for a new multiset Fj, recursively. If Problem 4.2 is solved finally,
then we can obtain a generator (A(®), 2()) such that F) = 7 = AN B®.

(4) If there is more additional target multiset 7, then go to Step 2. Otherwise, go to the
next step.

(5) Finally, we obtain a M (X(i), 20} whose eigenvalue multiset includes () = A B

We need to discuss the efficient numerical algorithm at the third step in the above method.
While a nonlinear optimization method is a powerful tool to find an optimal solution, there are
several potential difficulties to solve some problems such as divergence and instability. Most
of the numerical methods for solving the nonlinearly constrained optimization problems meet
a danger converging to a local minimal point or diverging, depending on initial values.

We propose a linear search algorithm in Algorithm 2. We can generate a sequence of
iterates that converges to an optimal solution provided that the initial value is sufficiently close
to that optimal solution. A basic idea is to make shift by following a straight line to a final
point from an initial point knowing a solution, and find a solution of the next stage using the
previous value as an initial value.

We choose a target multiset 7 C A, to which the multiset F;, expands in each iteration.
Initially, assume that an optimal solution X, o of Problem 4.2 is already computed and can be
used as an initial vector, because the ;s in (4.8) are explicitly computed by using Lemma 4.1.
ng denotes the number of segments. It is related with the length of change. If the procedure
fails, then in order to avoid diverging we can try to execute the algorithm again after increasing
nq recursively until some threshold. For 0 < k < ng — 1, compute X, ;1 such that

Rl = Xep +d (4.11)

where d = =l Let Fy, correspond to X, . We find (X, 8) corresponding to Fj, by solving
Problem 4.2 recursively, until arriving at the final destination. If the multiset Fj, arrives at the
final destination multiset 7 successfully, then the adaptive process succeeds. We can obtain
a vector (X,S) for a target multiset 7. Additionally, if the procedure fails, then, in order to
avoid diverging, we can try to execute the algorithm again after increasing n4 recursively until
a given threshold.

Finally, we implement a complete algorithm transforming from a given phase-type repre-
sentation to an HFCB representation (3, M), which has as minimal order as possible in Algo-
rithm 3. First, we compute an eigenvalue multiset A of 7. Recursively, we find an FC block
M (X(i), z(i)) including a chosen eigenvalue ;1 € A. We typically have two cases: an FC block
for a complex eigenvalue and a Coxian block for a real eigenvalue. For a complex eigenvalue
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Algorithm 2 LineSearch(B, F, T, S)
Input: B, F,T,S
Output: s, Flag, B
1: Compute a vector X with respecttold = B — F

2: Compute an initial vector X, o with respect to F
3: Compute X, with respect to a target multiset 7~
4: Set a segment number ng4

5. d = XXl n:c,o

6: for 0 < k <ngydo

7: Set iak“ = ic,k + a

8:  Compute a new solution (X, S) of Problem 4.2 for an old value (X, S) and X, j+1
9:  Compute F corresponding to X, j41
10:  if No solution then
11: return Flag = False
12:  else
13: Flag = True
14:  endif
15:  Resort XV in ascending order

16:  update § using (%)

17: end for

18: B is updated by using (X, X.)
19: return S, Flag, B

1, an FC induced from p possibly includes other elements of A. Choose a subset collection
P ={S1, -+ ,Sn}such that S, C Q, Sy NF =0, and |Sy| < |S;| for k > j. If w € Sk, then
w € Sk. Using P, we can choose a new target multiset 7 (D F) as large as possible. Compute
(X(i), z(i)) corresponding to 7 by applying the linear search algorithm. We can reduce the total
order of the HFCB matrix M depending on how to choose a target multiset 7. The process
continues until all complex numbers from €2 are removed. Next, for a selected real eigenvalue
u € , we compute PYO= w, m; = 1 and z = 0, which generate the Coxian block. We then
resort a generator Y in the ascending order of the minimal number of X0 F inally, we compute
an HFCB representation M and P using a generator Y such that 7P = PM. We can obtain a
transformation matrix P and M satistying TP = PM.

Finally, we note the initial vector 5 corresponding to the obtained mono-cyclic representa-
tion can be negative. Even though 7" has a Coxian generator S (X) as Theorem 3.1, the positivity
of 3 is not guaranteed. The order of the resulting Coxian generator can be larger than that of the
original one. The process for finding such P and S is called the Coxianization of PH-generator
T. The Coxianization of a PH-generator with only real eigenvalues has been proven to be fea-
sible; three numerical methods for Coxianization have been introduced and their performances
were compared [14].
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Algorithm 3 Compute an HFCB representation.

Input: (o, 7))
Output: (5, M)
1: Compute the eigenvalue multiset A of T’
2: Index A in descending order of their real values
3:0=A4,i=0
4: while € is nonempty do
t=1+1
if 2 has any complex number then
Select a complex number p € € with a maximal real value
Choose a proper number m; satisfying the inequality in (4.4)
Compute (XD, z()) and an ecigenvalue multiset B = {uo, - s Hm;—1} of
M(X®, z)) by using Lemma 4.1.
10 F={ppn}

R AN

11: Choose a subset collection o = {Si,--- ,Sny} such that Sy € Q, Sy N F = 0,
|Sk| < |S;| for k > j, and if w € Sk, then w € Sy,

12: fort=1: N do

13: T=FUS

14: [ S, Flag, B]= LineSearch(B, F, T, S)

15: if Flag == T'rue then

16: Compute (X, 2()) using §, and insert it into Y.

17: Break

18: end if

19: end for

20:  else

21: Select a maximal real value p € ) with

22: B={u}

23: 2O =, m; =1and 2 = 0.

24:  end if

25 Q=Q-BnNnA

26: end while

27: Resort a generator T in the ascending order of the minimal number of (@)

28: By using Algorithm 1, compute a HFCB representation M and P using a generator Y such
that TP = MP

29: Compute S = aP

30: return (3, M)

To make the initial vector non-negative, additional states have to be added to the distribution
similarly. If 3 contains at least one negative element then a further transformation is required
to obtain a PH representation. We can extend the PH generator by adding an Erlang tail as



AN OPTIMIZATION APPROACH FOR COMPUTING A SPARSE MONO-CYCLIC POSITIVE REPRESENTATION239

follows. For sufficiently large A\, we define a vector X = (A, -+, A) with repeat times N. Set
M -—-Mi1
a new generator M[; = [0 S()_\))} We have TP = PM;, 1 = P11 and § = aP. For

sufficiently large IV, the matrix a.P is non-negative.

5. NUMERICAL RESULTS AND DISCUSS

We have implemented the proposed optimization methods to compute an HFCB represen-
tation (3, M) by using Matlab. In order to solve constrained nonlinear problems, we use an
interior point option in the function ‘fmincon’, consisting of sequential quadratic programming
and trust region techniques [20]. Extensive numerical experiments have been carried out. The
orders of the PH-generators are between 4 and 6 in our numerical simulation. This section
presents typical numerical examples to illustrate the effects of the proposed method.

Example 5.1. Consider a phase-type distribution with the PH-representation ((1,0,0,0),7),
where
—4 0 0 0
1 -4 0 27
= 0 15 -2 0
01 0 09 -1

as introduced in [21]. By using Algorithm 3, we can obtain a 4 x 4 transformation matrix
P and M satisfying TP = PM, where M is constructed in the form (3.3) by using A(V) =
[1.435 1.435 3.716] and 2 = 0.611, A?) = 4.412, 2(?) = 0 and

1.325  0.514 0.571 2.000
p_ 1.685 0.954 41.472 0.300
~|—=0.146 2.910 1.148 0.500

2.349 1.611 0.450 0

Because the computed matrix P is not non-negative, the other constraint as o.P > 0 should
be needed instead of P > 0. The dimension is less than that of [9]. Therefore, we obtain an FC
representation (oP, M (X, z) with the same order of 4, while Mocanu and Commault’s method
[9] can transform an HFEB representation with an order of 5.

We note that the positivity of P is not necessary for the existence of 3 = aP > 0 from
Example 5.1. The PH-majorization of 7" is a too strong condition. Even for Coxianization
algorithm, making P a positive matrix enforces the order to increase [14]. If S contains at
least one negative element then a further transformation is required to obtain a monocyclic
representation. We can resort the diagonal elements of the HFCB be in an ascending order.
The ordering of blocks affects whether the vector 5 will be non-negative. We can extend
the monocyclic generator by adding an Erlang tail for sufficient large )\ similar to that of [8].
We give a counterexample condition for the nonexistence of 3 = aP > 0. We present a
counterexample condition, max(1‘M) > 0 for 8 > 0 not to exist. In Algorithm 1, let us
observe the recursion py, = ((Ak+11 4+ T)Prt1 — Chtn’ kt1Pk+n )/ Ck k41 for max(1*M) > 0.
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When pj.1 and pj, are positive, and ¢y > Mg (Or 1'M > 0), negative entries in
pr—1 can appear. Therefore, we cannot obtain P > 0 for any o > 0. In the next example,
we can verify different properties of two cases, 1'M < 0 and 1'M > 0 by using numerical
simulations.

Example 5.2. Consider a phase-type distribution with the PH-representation («,7") such that
—6.0 0.6 06 06 3

2 =45 0 0 0.1
T=1| 0 2 =35 0 0
0 0 2 =3 0
0 0 0 2 =2

While Mocanu and Commault’s method [9] can transform 7" into an HFEB representation with
order of 8, we can obtain a 5 x 6 matrix P and an HFCB generator M with an order of 6 by
using Algorithm 3. We can see that the matrix P is not non-negative. The proposed method can
derive multiple solutions depending on an given initial value. For max(1tM) < 0, we could
obtain o > 0 such that «P > 0 after attempting several times. For example, there are two
typical cases after applying the proposed algorithm.

(1) Thefirst case has X(1) = 1.120, z(1) = 0, X = (2.673,2.678, 3.116, 4.49201, 6.366)
and z(?) = 0.0591. For max(1*M) < 0, we obtained o > 0 such that a.P > 0 after
several trials.

(2) In the second case, we have X(1) = 1.12084, () = 0, X®) = (1.517, 3.660, 3.660,
3.660,6.420) and z(?) = 0.096. For max(1*M) > 0, we compute P for several times.
Typically, we can obtain P such as

—0.202 2.084 0.920 0.858 0.940 1.2
—0.127 1.043 0.481 0.090 1914 24
P = {-0.107 0.644 0.099 1.156 2.507 1.5
—0.113 0.539 0.936 1.686 1.753 1.0
—0.259 2.840 1.468 1.206 0.5463 0

Because all entries of the first column are negative, we can see that min(aP) < 0 for
any a > 0.

In order to show that the proposed method has good performance, a large set of random PH
generators samples were generated in the next example. The random matrices 7" are dense, but
the canonical representations obtained by the proposed method are sparse.

Example 5.3. A 31 samples of T" with order 5 and 4 complex eigenvalues are generated ran-
domly. Then for each sample, the proposed method and Mocanu and Commault’s method [9]
are applied to obtain H FC B and H F'E B, respectively. For each algorithm, we determine M
and 8 = aP and check non-negativity of 5. We compared the orders of the HFCB generators
and HFEB generators. Let dpc and dpg be the order of HF'C'B and H F E B, respectively.
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FIGURE 2. Histogram of the order d g minus the order dp¢

In Fig. 2, we plot dpg — dpe. We could see that the order of the solution obtained by us-
ing the proposed method is smaller than that of the solution obtained by using Mocanu and
Commault’s method [9].

We note that there are several similar approaches to find compact PH representations with a
unicyclic structure [15, 21]. A unicyclic block has more flexibility than FE block or FC block,
since the representation has more free parameter and is denser. Since a unicyclic block has too
many free parameters (2m — 1) comparing to the number of equations (m), it is impossible to
obtain a stable optimal solution using numerical method. So a modified unicyclic block was
introduced [15]. A modified unicyclic block approach reduces the free parameter number to m.
Thus, the values of m free parameters can be obtained by solving m equations. When the given
eigenvalue set frequently has no feasible solution, it cannot be applied. On the other hand, for
the case, the proposed method can obtain a feasible solution by solving Problem 4.2.

Furthermore, the importance of simple sparse representations comes from the fact that the
computational complexity of PH-distributed random-variate generation depends on the repre-
sentation in simulation applications [8]. The FC block approach can lead to more effective
random number generation of PH-distributions in stochastic modeling and analysis because
the number of its feedback loop can be reduced.

6. CONCLUSION

We tried to transform a phase-type representation into a sparse HFCB representation with
an order as low as possible. We introduced a numerical method for computing an HFCB repre-
sentation by solving a nonlinear optimization problem. To find a sparse HFCB representation
with lower order, including the multiset of eigenvalues of the original generator, we developed
a numerical algorithm solving a constrained nonlinear optimization program. We discussed
some numerical issues in efficiently finding a stable solution of the nonlinear constrained op-
timization problem. The proposed method can be applied to the sparse positive realization of
positive system.
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