• Title/Summary/Keyword: Nonlinear Problem

Search Result 2,464, Processing Time 0.305 seconds

Solving a Nonlinear Inverse Convection Problem Using the Sequential Gradient Method

  • Lee, Woo-Il;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.710-719
    • /
    • 2002
  • This study investigates a nonlinear inverse convection problem for a laminar-forced convective flow between two parallel plates. The upper plate is exposed to unknown heat flux while the lower plate is insulated. The unknown heat flux is determined using temperature measured on the lower plate. The thermophysical properties of the fluid are temperature dependent, which renders the problem nonlinear. The sequential gradient method is applied to this nonlinear inverse problem in order to solve the problem efficiently. The function specification method is incorporated to stabilize the sequential estimation. The corresponding adjoint formalism is provided. Accuracy and stability have been examined for the proposed method with test cases. The tendency of deterministic error is investigated for several parameters. Stable solutions are achieved eve]1 with severely impaired measurement data.

ON THE INVERSE PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH A NONLINEAR SPECTRAL PARAMETER IN THE BOUNDARY CONDITION

  • Mamedov, Khanlar R.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1243-1254
    • /
    • 2009
  • The inverse scattering problem is investigated for some second order differential equation with a nonlinear spectral parameter in the boundary condition on the half line [0, $\infty$). In the present paper the coefficient of spectral parameter is not a pure imaginary number and the boundary value problem is not selfadjoint. We define the scattering data of the problem, derive the main integral equation and show that the potential is uniquely recovered.

MULTIPLE POSITIVE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEM WITH FINITE FRACTIONAL DIFFERENCE

  • He, Yansheng;Hou, Chengmin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.173-186
    • /
    • 2015
  • In this paper, we consider a discrete fractional nonlinear boundary value problem in which nonlinear term f is involved with the fractional order difference. We transform the fractional boundary value problem into boundary value problem of integer order difference equation. By using a generalization of Leggett-Williams fixed-point theorem due to Avery and Peterson, we provide sufficient conditions for the existence of at least three positive solutions.

Nonlinear control of an autonomous mobile robot using nonlinear obserbers

  • Ishikawa, Masato;Sampei, Mitsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.400-404
    • /
    • 1994
  • In this paper, we will investigate the position estimation problem for autonomous mobile robots. Formulating this as a state estimation problem for nonlinear SISO system, then we will apply several types of nonlinear observers. Simulation results of observer-based navigation control will be also provided.

  • PDF

AN EXACT PENALTY FUNCTION METHOD FOR SOLVING A CLASS OF NONLINEAR BILEVEL PROGRAMS

  • Lv, Yibing
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1533-1539
    • /
    • 2011
  • In this paper, a class of nonlinear bilevel programs, i.e. the lower level problem is linear programs, is considered. Aiming at this special structure, we append the duality gap of the lower level problem to the upper level objective with a penalty and obtain a penalized problem. Using the penalty method, we give an existence theorem of solution and propose an algorithm. Then, a numerical example is given to illustrate the algorithm.

A singular nonlinear boundary value problem in the nonlinear circular membrane under normal pressure

  • Shin, Jun-Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.761-773
    • /
    • 1995
  • The nonlinear boundary value problem $$ y" = f(x, y, y') = -\frac{x}{3}y' - \frac{y^2}{g(x)}, 0 < x < 1, $$ $$ (1.1) y'(0) = 0, and either (H) : y(1) = \lambda > 0 $$ $$ or (S) : y'(1) + (1 - \upsilon)y(1) = 0, 1 - \upsilon > 0, $$ $$g \in C[0, 1], k \leq g(x) \leq K on [0, 1] for some k, K > 0 $$ arises in the nonlinear circular membrane under normal pressure [2, 3]., 3].

  • PDF

NUMBER OF THE NONTRIVIAL SOLUTIONS OF THE NONLINEAR BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2010
  • We investigate the number of the nontrivial solutions of the nonlinear biharmonic equation with Dirichlet boundary condition. We give a theorem that there exist at least three nontrivial solutions for the nonlinear biharmonic problem. We prove this result by the finite dimensional reduction method and the shape of the graph of the corresponding functional on the finite reduction subspace.

Adaptive Bilinear Lattice Filter(I)-Bilinear Lattice Structure (적응 쌍선형 격자필터(I) - 쌍선형 격자구조)

  • Heung Ki Baik
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.26-33
    • /
    • 1992
  • This paper presents lattice structure of bilinear filter and the conversion equations from lattice parameters to direct-form parameters. Billnear models are attractive for adaptive filtering applications because they can approximate a large class of nonlinear systems adequately, and usually with considerable parsimony in the number of coefficients required. The lattice filter formulation transforms the nonlinear filtering problem into an equivalent multichannel linear filtering problem and then uses multichannel lattice filtering algorithms to solve the nonlinear filtering problem. The lattice filters perform a Gram-Schmidt orthogonalization of the input data and have very good easily extended to more general nonlinear output feedback structures.

  • PDF

NUMERICAL SOLUTIONS FOR ONE AND TWO DIMENSIONAL NONLINEAR PROBLEMS RELATED TO DISPERSION MANAGED SOLITONS

  • Kang, Younghoon;Lee, Eunjung;Lee, Young-Ran
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.835-847
    • /
    • 2021
  • We study behavior of numerical solutions for a nonlinear eigenvalue problem on ℝn that is reduced from a dispersion managed nonlinear Schrödinger equation. The solution operator of the free Schrödinger equation in the eigenvalue problem is implemented via the finite difference scheme, and the primary nonlinear eigenvalue problem is numerically solved via Picard iteration. Through numerical simulations, the results known only theoretically, for example the number of eigenpairs for one dimensional problem, are verified. Furthermore several new characteristics of the eigenpairs, including the existence of eigenpairs inherent in zero average dispersion two dimensional problem, are observed and analyzed.