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NUMBER OF THE NONTRIVIAL SOLUTIONS OF THE

NONLINEAR BIHARMONIC PROBLEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the number of the nontrivial solutions
of the nonlinear biharmonic equation with Dirichlet boundary con-
dition. We give a theorem that there exist at least three nontrivial
solutions for the nonlinear biharmonic problem. We prove this re-
sult by the finite dimensional reduction method and the shape of
the graph of the corresponding functional on the finite reduction
subspace.

1. Introduction

Let Ω be a smooth bounded region in Rn with smooth boundary ∂Ω,
∆2 denote the biharmonic operator and c ∈ R. Let g : R → R be a
differentiable function such that g(0) = 0, and c ∈ R. In this paper we
investigate the number of the weak solutions of the following nonlinear
biharmonic equation with Dirichlet boundary condition

(1.1)
∆2u + c∆u = g(u) in Ω,

u = 0, ∆u = 0 on ∂Ω.

The eigenvalue problem

∆2u + c∆u = Λu in Ω,

u = 0, ∆u = 0 on ∂Ω,

has infinitely many eigenvalues Λk = λk(λk−c), k ≥ 1 and corresponding
eigenfunctions φk, k ≥ 1, the suitably normalized with respect to L2(Ω)
inner product, of where each eigenvalue λk is repeated as often as its
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multiplicity, where λk, k ≥ 1, are the infinitely many eigenvalues and
φk, k ≥ 1, are the corresponding eigenfunctions, suitably normalized
with respect to L2(Ω) inner product of the eigenvalue problem

∆u + λu = 0 in Ω,

u = 0 on ∂Ω.

We recall that Λ1 ≤ Λ2 ≤ . . . → +∞, and that φ1(x) > 0 for x ∈ Ω. We
assume that λk < c < λk+1. We also assume that g ∈ C1(R,R) satisfies
the following conditions:
(g1) There exist α < β such that

α ≤ g′(u) ≤ β.

(g2) Let Λj+1, Λj+2, Λj+m, m ≥ 1, be all eigenvalues with in [α, β](without
loss of generality, we may assume that α, β are not the eigenvalues Λi,
i ≥ 1). Suppose that there exist γ and C such that Λj+m < γ < β and

G(u) ≥ 1

2
γ‖u‖2 − C, ∀u ∈ R,

where G(ξ) =
∫ ξ

0
g(t)dt.

(g3) g(0) = 0.
(g4) There exists eigenvalue Λl ∈ [Λj+1, Λj+m) such that

Λl < g′(0) < Λl+1.

Choi and Jung [2] show that the problem

(1.2)
∆2u + c∆u = bu+ + s in Ω,

u = 0, ∆u = 0 on ∂Ω,

has at least two nontrivial solutions when (c < λ1, Λ1 < b < Λ2 and
s < 0) or (λ1 < c < λ2, b < Λ1 and s > 0). They obtained these results
by use of the variational reduction method. They [3] also proved that
when c < λ1, Λ1 < b < Λ2 and s < 0, (1.2) has at least three nontrivial
solutions by use of the degree theory. Tarantello [5] also studied (1.1).
She show that if c < λ1 and b ≥ Λ1, then (1.1) has a negative solution.
She obtained this result by the degree theory. Micheletti and Pistoia
[4] also proved that if c < λ1 and b ≥ Λ2, then (1.1) has at least four
solutions by the variational linking theorem and Leray-S chauder degree
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theory. In this paper we are looking for the weak solutions of (1.1), that
is, ∫

Ω

∆2u · v + c∆u · v − g(u)v = 0, ∀v ∈ H,

where H is introduced in section 2. Our main result is the following.

Theorem 1.1. Assume that g satisfies the conditions (g1)-(g4). Then
(1.1) has at least three nontrivial solutions.

The outline of the proof is as follows: In section 2 we introduce the
Hilbert space H and show that the corresponding functional I(u) of
(1.1) is in C1(H, R), Fréchet differentiable and satisfies the Palais-Smale
condition. In section 3, we prove Theorem 1.1. For the proof of Theorem
1.1 we use the finite dimensional reduction method to reduce the theory
on the infinite dimensional space to the one on the finite dimensional
subspace. So we obtain the critical points results of the functional on
the infinite space H from the critical points results of the corresponding
functional Ĩ(v) on the finite dimensional reduction subspace.

2. Finite dimensional reduction method

We assume that λk < c < λk+1, c ∈ R. Any element u in L2(Ω) can
be written as

u =
∑

hkφk with
∑

h2
k < ∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑

|Λk| < ∞}.
Then this is a complete normed space with a norm

‖u‖ = [
∑

|Λk|h2
k]

1
2 .

Since λk → +∞ and c is fixed, we have
(i) ∆2u + c∆u ∈ H implies u ∈ H.
(ii) ‖u‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if ‖u‖ = 0,
which is proved in [1].

From the conditions on g, we have the following lemma:
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Lemma 2.1. Assume that g satisfies the conditions (g1)-(g4). Then
the solutions in L2(Ω) of

∆2u + c∆u = g(u) in L2(Ω)

belong to H.

Proof. Let g(u) =
∑

hkφk ∈ L2(Ω). Then

(∆2 + c∆)−1(g(u)) =
∑ 1

λk(λk − c)
hkφk.

Hence we have

‖(∆2 + c∆)−1g(u)‖2 =
∑

|λk(λk − c)| 1

λk(λk − c))2
h2

k ≤ C
∑

h2
k

for some C > 0, which means that

‖(∆2 + c∆)−1g(u)‖ ≤ C1‖u‖L2(Ω).

With the aid of Lemma 2.1 it is enough that we investigate the exis-
tence of solutions of (1.1) in the subspace H of L2(Ω). Let us define the
functional in H ×R,

I(u) =

∫

Ω

1

2
[|∆u|2 − c

2
|∇u|2 −G(u)]dx,

where G(ξ) =
∫ ξ

0
g(t)dt. Then I(u) is well defined. By the following

Lemma 2.2, I(u) ∈ C(H,R), Fréchet differentiable in H, so the solu-
tions of (1.1) coincide with the critical points of I(u).

Lemma 2.2. Assume that g(u) satisfies the conditions g(1)-g(4). Then
I(u) is continuous and Fréchet differentiable in H and

(2.1) DI(u)(h) =

∫

Ω

∆u ·∆h− c∇u · ∇h− g(u)h

for h ∈ H
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Proof. Let u ∈ H. First we will prove that I(u) is continuous. We
consider

|I(u + v)− I(u)|
=

∫

Ω

[
1

2
|∆(u + v)|2 − c

2
|∇(u + v)|2 −G(u + v)]

−
∫

Ω

[
1

2
|∆u|2 − c

2
|∇u|2G(u)]

=

∫

Ω

[u · (∆2v + c∆v) +
1

2
v · (∆2v + c∆v)−G(u + v)−G(u)].

Let u =
∑

hkφk, v =
∑

h̃kφk. Then we have

|
∫

Ω

u · (∆2v + c∆v)dx| = |
∑ ∫

Ω

Λkhkh̃k| ≤ ‖u‖‖v‖,

|
∫

Ω

v · (∆2v + cδv)dx| = |
∑

Λkh̃
2
k| ≤ ‖v‖2.

On the other hand, by Mean Value Theorem and (g1), we have

G(u + v)−G(u) =

∫ u+v

0

g(s)ds−
∫ u

0

g(s)ds

=
1

2
g′(t)(u + v)2 − 1

2
g′(t′)u2

≤ max{|α|, |β|}|v|(|u|+ |v|)
≤ C max{|α|, |β|}‖v‖(‖u‖+ ‖v‖).

With the above results, we see that I(u) is continuous at u. To prove
I(u) is Fréchet differentiable at u ∈ H, we consider

|I(u + v) − I(u)−DI(u)v|
= |

∫

Ω

1

2
v(∆2v + c∆v)−G(u + v) + G(u)− g(u)v|

≤ 1

2
‖v‖2 + Cγ‖v‖(‖u‖+ ‖v‖) + M‖v‖

≤ C ′‖v‖(‖v‖+ ‖u‖+ ‖v‖+ 1).

By the following Lemma 2.3 (finite dimensional reduction method),
we can get the critical results of the functional on the infinite dimensional
space H from that of the functional on the finite dimensional one.
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Let V be m dimensional subspace of H spanned by φj+1,. . . ,φj+m

whose eigenvalues are Λj,. . . , Λj+m. Let W be the orthogonal comple-
ment of V in H. Let P : H → V be the orthogonal projection of H onto
V and I − P : H → W denote that of H onto W . Then every element
u ∈ L2(Ω) is expressed by u = v + z, v ∈ Pu, z = (I − P )u. Then (1.1)
is equivalent to the two systems in the two unknowns v and z:

∆2v + c∆v = P (g(v + z)) in Ω,

∆2z + c∆z = (I − P )(g(v + z)) in Ω,

v = 0, ∆v = 0 on ∂Ω,

z = 0, ∆z = 0 on ∂Ω.

Let W1 be a subspace of W spanned by eigenvalues Λ1, . . ., Λj and W2

be a subspace of W spanned by eigenvalues Λi, i ≥ j +m+1. Let v ∈ V
be fixed and consider the function h : W1 ×W2 → R defined by

h(w1, w2) = I(v + w1 + w2).

The function h has continuous partial Fréchet derivatives D1h and D2h
with respect to its first and second variables given by

(2.2) Dih(w1, w2)(yi) = DI(v + w1 + w2)(yi)

for yi ∈ Wi, i = 1, 2. We recall that if I is a function of class C1 and u0

is a critical point of I, then u0 is called of mountain pass type if for every
open neighborhood U of I−1(−∞, I(u0))∩U 6= ∅ and I−1(−∞, I(u0))∩U
is not pass connected.

Lemma 2.3. Assume that g satisfies the conditions (g1)-(g4).Then
(i) there exists m1 < 0 such that if w1 and y1 are in W1 and w2 ∈ W2,
then

(D1h(w1, w2)−D1h(y1, w2))(w1 − y1) ≤ m1‖w1 − y1‖2,

(ii) there exists m2 > 0 such that if w2 and y2 are in W2 and w1 ∈ W1,
then

(D2h(w1, w2)−D2h(w1, y2))(w2 − y2) ≥ m2‖w2 − y2‖2

(iii) there exists a unique solution z ∈ W of the equation

(2.3) ∆2z + c∆z = (I − P )(g(v + z)) in W.
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If we put z = θ(v), then θ is continuous on V and satisfies a uniform
Lipschitz condition in v with respect to the L2 norm(also norm ‖ · ‖).
Moreover

DI(v + θ(v))(w) = 0 for all w ∈ W.

(iv) If Ĩ : V → R is defined by Ĩ(v) = I(v+θ(v)), then Ĩ has a continuous
Fréchet derivative DĨ with respect to v, and

(2.4) DĨ(v)(h) = DI(v + θ(v))(h) for all v, h ∈ V.

(v) If v0 ∈ V is a critical point of Ĩ if and only if v0 + θ(v0) is a critical
point of I.
(vi) Let S ⊂ V and Σ ⊂ H be open bounded regions such that

{v + θ(v); v ∈ S} = Σ ∩ {v + θ(v); v ∈ V }.
If DĨ(v) 6= 0 for v ∈ ∂S, then

d(DĨ, S, 0) = d(DI, Σ, 0),

where d denote the Leray-Schauder degree.
(vii) If u0 = v0 + θ(v0) is a critical point of mountain pass type of I,
then v0 is a critical point of mountain pass type of Ĩ.

Proof. (i) According to the variation all characterization of the eigen-
values {Λj}∞j=1 we have

(2.4.a) ‖w1‖2 ≤ Λj‖w1‖2
L2(Ω)

for all w1 ∈ W1 and

(2.5) ‖w2‖2 ≥ Λj+m+1‖w1‖2
L2(Ω)

for all w2 ∈ W2. If w1 and y1 are in W1 and w2 ∈ W2, then

(D1h(w1, w2)−D1h(y1, w2))(w1 − y1)

=

∫

Ω

|∆(w1 − y1)|2 − c|∇(w1 − y1)|2 − (g(v + w1 + w2)

−g(v + y1 + w2))(w1 − y1)dx.

Since (g(ξ2)− g(ξ1))(ξ2 − ξ1) > α(ξ2 − ξ1) and (2.4.a), we see that if w1

and y1 are in W1 and w2 ∈ W2, then

(D1h(w1, w2)−D1h(y1, w2))(w1 − y1) ≤ m1‖w1 − y1‖2
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where m1 = 1− α
Λj

< 0.

(ii) Similarly, using the fact that (g(ξ2) − g(ξ1))(ξ2 − ξ1) ≤ β(ξ2 − ξ1)
2

and (2.5) we see that if w2 and y2 are in W2 and w1 ∈ W1, then

(D2h(w1, w2)−D2h(w1, y2))(w2 − y2) ≥ m2‖w2 − y2‖2

where m2 = 1− β
Λj+m+1

> 0.

(iii) Let δ = α+β
2

. If g1(ξ) = g(ξ) − δξ, the equation (2.3) is equivalent
to

(2.6) z = (∆2 + c∆− δ)−1(I − P )(g1(v + z))

Since (∆2 + c∆ − δ)−1(I − P ) is self adjoint, compact and linear map
from (I −P )L2(Ω) into itself, the eigenvalues of (∆2 + c∆− δ)−1(I −P )
are (Λl − δ)−1, l ≤ j or l ≥ j + m + 1. Therefore its L2 norm is
(min{|Λj−δ|, |Λj+m+1−δ|}−1. Since |g1(ξ2)−g1(ξ1)| ≤ max{|α−δ|, |β−
δ|}|ξ2 − ξ1| = |α+β|

2
|ξ2 − ξ1|, it follows that the right-hand side of (2.6)

defines, for fixed v ∈ V , a Lipschitz mapping of (I − P )L2(Ω) into itself
with Lipschitz constant r < 1. Therefore, by the contraction mapping
principle, for given v ∈ V , there exists a unique z = (I−P )L2(Ω) which
satisfies (2.6). If θ(v) denote the unique z ∈ (I − P )L2(Ω) which solves
(2.3), then θ is continuous and satisfies a uniform Lipschitz condition in
v with respect to the L2 norm(also norm ‖‖). In fact, if z1 = θ(v1) and
z2 = θ(v2), then

‖z1 − z2‖L2(Ω)

= ‖(∆2 + c∆− δ)−1(I − P )(g1(v1 + z1)− g1(v2 + z2))‖L2(Ω)

≤ r‖(v1 + z1)− (v2 + z2)‖L2(Ω)

≤ r(‖v1 − v2‖L2(Ω) + ‖z1 − z2‖L2(Ω)) ≤ r‖v1 − v2‖+ r‖z1 − z2‖.
Hence

(2.7) ‖z1 − z2‖ ≤ C‖v1 − v2‖, C =
r

1− r
.

Let u = v + z, v ∈ V and z = θ(v). If w ∈ (I −P )L2(Ω)∩H, then from
(2.3) we see that∫

Ω

[∆z ·∆w − c∇z · ∇w − (I − P )(g(v + z)w)]dx = 0.

Since ∫

Ω

∆z ·∆w = 0 and

∫

Ω

∇v · ∇w = 0,
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we have

(2.8) DI(v + θ(v))(w) = 0.

(iv) Since the functional I has a continuous Fréchet derivative DI, Ĩ

has a continuous Fréchet derivative DĨ with respect to v.
(v) Suppose that there exists v0 ∈ V such that DĨ(v0) = 0. From
DĨ(v)(h) = DI(v + θ(v))(h) for all v, h ∈ V , DI(v0 + θ(v0))(h) = 0 for
all h ∈ V . Since DI(v + θ(v))(w) for all w ∈ W and H is the direct sum
of V and W , it follows that DI(v0 + θ(v0)) = 0. Thus v0 + θ(v0) is a
solution of (1.1). Conversely if u is a solution of (1.1) and v = Pu, then
DĨ(v) = 0.
(vi) The proof of part (vi) follows by arguing as in Lemma 2.6 of [11].
(vii) Suppose v0 is not of mountain pass type of Ĩ. Let S be an open
neighborhood of v0 in V such that Ĩ−1(−∞, Ĩ(v0))∩ S is empty or path
connected. If Ĩ−1(−∞, Ĩ(v0)) ∩ S is empty, by part (i) we see that
{v + w : v ∈ V, w ∈ W} ∩ I−1(−∞, I(u0)) is also empty. Thus u0 is not
of mountain pass type for I. If Ĩ−1(−∞, Ĩ(v0)) ∩ S is path connected,
Letting T = {v + w : v ∈ V, ‖w − θ(v)‖ < 1} and using again (i) it is
seen that T ∩ I−1(−∞, I(u0)) is also path connected.

3. Proof of Theorem 1.1

We shall show that Ĩ(v) satisfies the (P.S.) condition.

Lemma 3.1. Assume that g satisfies the conditions (g1)-(g4). Then
Ĩ(v) satisfies the Palais-Smale condition.

Proof. Let us set u(v) = v + w(v), v ∈ V , w(v) ∈ W . Then we have

Ĩ(v) =

∫

Ω

[
1

2
|∆v + ∆w(v)|2 − c

2
|∇v +∇w(v)|2]dx

−
∫

Ω

G(v + w(v))dx.
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Moreover we have

Ĩ(v) = I(v + w(v)) = I(u(v))

=

∫

Ω

[
1

2
|∆u(v)|2 − c

2
|∇u(v)|2 −

∫

Ω

G(u(v))dx

=

∫

Ω

[
1

2
|∆v|2 − c

2
|∇v|2]dx−

∫

Ω

G(u(v))dx

+{
∫

Ω

1

2
|∆u(v)|2 − c

2
|∇u(v)|2 − 1

2
|∆v|2 +

c

2
|∇v|2

−
∫

Ω

[G(u(v))−G(v)]dx}.

The terms in the bracket are equal to

−
∫

Ω

[G′(sw(v)− v)w(v)dx]ds +
1

2

∫

Ω

(∆2u(v) + c∆u(v))w(v)dx

=

∫

Ω

∫ 1

0

G′′(sw(v) + v)w(v)w(v)sdsdx

−1

2

∫

Ω

(∆2w(v) + c∆w(v))w(v)dx

Thus we have

Ĩ(v) ≤
∫

Ω

[
1

2
|∆v|2 − c

2
|∇v|2]dx

−
∫

Ω

G(v)dx

≤ 1

2
{Λj+m − γ}‖v‖2 + C|Ω| −→ −∞ as ‖v‖ → ∞.

Thus −Ĩ(v) is bounded from below and, so satisfies the (P.S.) condition.

PROOF OF THEOREM 1.1
By Lemma 3.1, I(v) is bounded above, satisfies the (P.S.) condition and
Ĩ(v) → −∞ as ‖v‖ → ∞. We claim that 0 is neither a minimum nor
degenerate. In fact, we note that 0 = 0 + θ(0), θ(0) = 0. Since I + θ is
continuous, I is identity map, there exists a small neighborhood B of 0
such that if v ∈ B, then, by (g4),

1

2

∫

Ω

(∆2v + c∆v)vdx− Λ̄

2

∫

Ω

G(v)dx + o(‖v‖2) ≤ Ĩ(v)
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≤ 1

2

∫

Ω

(∆2v + c∆v)vdx− Λ

2

∫

Ω

G(v)dx + o(‖v‖2),

where (Λ, Λ̄) ⊂ (Λl, Λl+1). Thus Ĩ(v) has at least three nontrivial weak
solutions.
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