• Title/Summary/Keyword: Nonlinear Manifolds

Search Result 26, Processing Time 0.02 seconds

MOTION OF VORTEX FILAMENTS IN 3-MANIFOLDS

  • PAK, HEE-CHUL
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.75-85
    • /
    • 2005
  • In this paper, the visco-Da-Rios equation; (0.1) ($$\frac{{\partial}{\gamma}}{{\partial}t}=\frac{{\partial}{\gamma}}{{\partial}s}{\bigwedge}\frac{D}{ds}\frac{{\partial}{\gamma}}{{\partial}s}+{\nu}\frac{{\partial}{\gamma}}{{\partial}s}$$) is investigated on 3-dimensional complete orientable Riemannian manifolds. The global existence of solution is discussed by trans-forming (0.1) into a cubic nonlinear Schrodinger equation for complete orient able Riemannian 3-manifolds of constant curvature.

NON-INVARIANT HYPERSURFACES OF A (𝜖, 𝛿)-TRANS SASAKIAN MANIFOLDS

  • Khan, Toukeer;Rizvi, Sheeba
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.985-994
    • /
    • 2021
  • The object of this paper is to study non-invariant hypersurface of a (𝜖, 𝛿)-trans Sasakian manifolds equipped with (f, g, u, v, λ)-structure. Some properties obeyed by this structure are obtained. The necessary and sufficient conditions also have been obtained for totally umbilical non-invariant hypersurface with (f, g, u, v, λ)-structure of a (𝜖, 𝛿)-trans Sasakian manifolds to be totally geodesic. The second fundamental form of a non-invariant hypersurface of a (𝜖, 𝛿)-trans Sasakian manifolds with (f, g, u, v, λ)-structure has been traced under the condition when f is parallel.

OPTIMALITY CONDITIONS AND DUALITY RESULTS OF THE NONLINEAR PROGRAMMING PROBLEMS UNDER ρ-(p, r)-INVEXITY ON DIFFERENTIABLE MANIFOLDS

  • Jana, Shreyasi;Nahak, Chandal
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.491-502
    • /
    • 2014
  • In this paper, by using the notion of ${\rho}$-(p,r)-invexity assumptions on the functions involved, optimality conditions and duality results (Mond-Weir, Wolfe and mixed type) are established on differentiable manifolds. Counterexample is constructed to justify that our investigations are more general than the existing work available in the literature.

ON THE ELLIPTIC EQUATION ${\Delta}u+H({\chi})e^{u}$ = 0 ON COMPACT MANIFOLDS

  • Jung, Yoon-Tae;Kim, Seon-Bu;Shin, Cheol-Guen
    • The Pure and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.9-18
    • /
    • 1996
  • In this paper, we consider the existence of a solution to the elliptic nonlinear partial differential equation ${\Delta}u+H({\chi})e^{u}$ = 0 (H $\neq$ 0) (1) on a compact manifold without boundary. This equation is related to the problem of a pointwise conformal deformation of metrics on two dimensional compact connected manifolds.(omitted)

  • PDF

Switching Control for End Order Nonlinear Systems by Avoiding Singular Manifolds (특이공간 회피에 의한 2차 비선형 시스템의 스위칭 제어기 설계)

  • Yeom, D.H.;Im, K.H.;Choi, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.315-318
    • /
    • 2003
  • This paper proposes a switching control method applicable to any affine, 2nd order nonlinear system with single input. The key contribution is to develop a control design method which uses a piecewise continuous Lyapunov function non-increasing at every discontinuous point. The proposed design method requires no restrictions except full state availability. To obtain a non-increasing, piecewise continuous Lyapunov function, we change the sign of off-diagonal term s of the positive definite matrix composing the former Lyapunov function according to the sign of the Inter-connection term. And we use the solution of inequalities which guarantee each Lyapunov function is non-increasing at any discontinuous point.

  • PDF

HARNACK ESTIMATES FOR NONLINEAR BACKWARD HEAT EQUATIONS WITH POTENTIALS ALONG THE RICCI-BOURGUIGNON FLOW

  • Wang, Jian-Hong
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.313-329
    • /
    • 2020
  • In this paper, we derive various differential Harnack estimates for positive solutions to the nonlinear backward heat type equations on closed manifolds coupled with the Ricci-Bourguignon flow, which was done for the Ricci flow by J.-Y. Wu [30]. The proof follows exactly the one given by X.-D. Cao [4] for the linear backward heat type equations coupled with the Ricci flow.

PERELMAN TYPE ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES FOR WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS UNDER CURVATURE DIMENSION CONDITION

  • Wang, Yu-Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1539-1561
    • /
    • 2021
  • We prove Perelman type 𝒲-entropy formulae and differential Harnack estimates for positive solutions to weighed doubly nonlinear diffusion equation on weighted Riemannian manifolds with CD(-K, m) condition for some K ≥ 0 and m ≥ n, which are also new for the non-weighted case. As applications, we derive some Harnack inequalities.

GRADIENT ESTIMATES OF A NONLINEAR ELLIPTIC EQUATION FOR THE V -LAPLACIAN

  • Zeng, Fanqi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.853-865
    • /
    • 2019
  • In this paper, we consider gradient estimates for positive solutions to the following nonlinear elliptic equation on a complete Riemannian manifold: $${\Delta}_Vu+cu^{\alpha}=0$$, where c, ${\alpha}$ are two real constants and $c{\neq}0$. By applying Bochner formula and the maximum principle, we obtain local gradient estimates for positive solutions of the above equation on complete Riemannian manifolds with Bakry-${\acute{E}}mery$ Ricci curvature bounded from below, which generalize some results of [8].

HARNACK INEQUALITY FOR A NONLINEAR PARABOLIC EQUATION UNDER GEOMETRIC FLOW

  • Zhao, Liang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1587-1598
    • /
    • 2013
  • In this paper, we obtain some gradient estimates for positive solutions to the following nonlinear parabolic equation $$\frac{{\partial}u}{{\partial}t}={\triangle}u-b(x,t)u^{\sigma}$$ under general geometric flow on complete noncompact manifolds, where 0 < ${\sigma}$ < 1 is a real constant and $b(x,t)$ is a function which is $C^2$ in the $x$-variable and $C^1$ in the$t$-variable. As an application, we get an interesting Harnack inequality.