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ABSTRACT. In this paper, by using the notion of p— (p, r)-invexity assump-
tions on the functions involved, optimality conditions and duality results
(Mond-Weir, Wolfe and mixed type) are established on differentiable man-
ifolds. Counterexample is constructed to justify that our investigations are
more general than the existing work available in the literature.
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1. Introduction

Convexity plays a vital role in the theory of optimization but it is often not
enjoyed by real problems. Therefore, several generalizations have been devel-
oped for the classical properties of convexity. An important and significant
generalization of convexity is invexity which was introduced by Hanson [6], in
the year 1981. Later on Zalmai [16] generalized the class of invex functions into
p — (n,0)-invex functions. In 2001, Antczak [3] introduced (p, r)-invex sets and
functions. Mandal and Nahak [9] introduced (p,r) — p — (1, #)-invexity which is
a generalization of the results of both Zalmai [16] and Antczak [3].

Rapcsak [13] introduced a generalization of convexity called geodesic convex-
ity and extended many results of convex analysis and optimization theory from
linear spaces to Riemannian manifolds. Udriste [14] established duality results
for a convex programming problem on Riemannian manifolds. Pini [12] in-
troduced the notion of invex functions on a manifold. Motivated by Pini [12],
Mititelu [11] generalized invexity by defining (p, n)-invex, (p, n)-pseudoinvex and
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(p,m)-quasiinvex functions. Mititelu [11] also established the necessary and suffi-
cient conditions of Karush-Kuhn-Tucker type for a vector programming problem
defined on a differentiable manifold. Mond-Weir type duality for vector pro-
gramming problems on differentiable manifolds was developed by Ferrara and
Mititelu [5]. The concepts of geodesic invex sets, geodesic invex and geodesic
preinvex functions were introduced by Barani and Pouryayevali [4] on Riemann-
ian manifolds. Ahmad et al. [2] extended these results by introducing geodesic
n-pre-pseudo invex functions and geodesic n-pre-quasi invex functions. Recently,
Igbal et al. [7] defined geodesic E-convex sets and geodesic E-convex functions.
Further, Agarwal et al. [1] introduced geodesic a-invex sets, geodesic a-invex
and a-preinvex functions.

Motivated to the concept of (p,r) — p — (1, §)-invexity which was introduced by
Mandal and Nahak [9], in this paper we have defined p — (p, r)-invex functions
on differentiable manifolds. We have studied optimality conditions and duality
results of the nonlinear programming problems on differentiable manifolds under
this generalized invexity assumptions.

2. Preliminaries

In this section, we recall some definitions and known results about differ-
entiable manifolds which will be used throughout the article. These standard
materials can be found in [8, 15].

Definition 2.1. An n-dimensional manifold is a Hausdorff topological space
which is connected and has the property that each point has a neighborhood
homeomorphic to some open set in Cartesian n-space.
A system S of differentiable coordinates in an n-dimensional manifold M is an
indexed family {V;,j € J} of open sets covering M, and for each j, a homeo-
morphism v; : E; — V}, where Ej is an open set in Cartesian n-space, such that
the map

Uit (Vi V) = o (Vi Ve), i €
is differentiable. If each such map has continuous derivatives of order r, then S
is said to be of class r.
Two systems of coordinates S, S’ in M of class r are said to be r-equivalent if
the composite families {V;, V/}, {¢;, ¢} } form a system of class r.
A differentiable n-manifold M of class r is an n-manifold M, together with an
r-equivalence class of systems of coordinates in M.

Definition 2.2. A curve on a differentiable manifold M is a differentiable map
a from some interval J = (=4, 6) of the real line into M.

Definition 2.3. A tangent vector on a curve v at a point p of M is defined as
the map

. oo . d

Ip: C (M)—>R7f’—>’7p(f)5a(f07)|p- (1)
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Definition 2.4. The set of all tangent vectors at a point p of M is called the
tangent space at p and is denoted by T}, M.

Definition 2.5. A manifold whose tangent spaces are endowed with a smoothly
varying inner product with respect to a point x € M is called a Riemannian
manifold. The smoothly varying inner product, denoted by < &, (, > for every
two elements £, and (, of T,M, is called a Riemannian metric. If M is a
differentiable manifold, then there always exist Riemannian metrices on M. As a
result there exists exactly one covariant derivation called Levi-Civita connection
denoted by VxY for any vector fields X, Y on M.

Let M be an n-dimensional differentiable manifold and 7, M be the tangent
space to M at p. Also assume that TM = Upe o IpM is the tangent bundle of
M. Let a be a differentiable curve on M with a(0) = p € M. Then the tangent
vector to the curve a at p is v = o/(0) € T )M = T, M. Assume that N is
another differentiable manifold and ¢ : M — N is a differentiable map.

Definition 2.6 ([5]). The linear map d¢, : T,M — Ty, N defined by d¢,(v) =
¢'(p)v is called the differential of ¢ at the point p.

Let F : M — R be a differentiable function. The differential of F’ at p, namely
dFy, : T,M — TpR = R, is introduced by dFy,(v) = dF(p)v, v € T,M. The
length of a differentiable curve ~ : [a,b] — M is defined by

b
L(y) = / I/ ()]} oy

For any two points p,q € M, we define d(p,q) = inf{L(y) : ~ is a differentiable
curve joining p to g }. Then d is a distance which induces the original topology
on M.

Definition 2.7 ([4]). A geodesic is a smooth curve v, such that 7 satisfies

the equation V 4y d'zi—it) = 0. The existence theorem for ordinary differential
dt

equations implies that for every v € TM there exist an open interval J(v)
containing 0 and exactly one geodesic v, : J(v) — M with dzlgo) = v. This
implies that there is an open neighborhood TM of the submanifold M of TM
such that for every v € TM the geodesic 7,(t) is defined for |{|] < 2. The
exponential mapping exp : TM — M is then defined as exp(v) = J,(1) and the

restriction of exp to a fiber T, M in TM is denoted by exp,, for every p € M.

We consider now a map n : M x M — TM such that n(p, q) € T,M for every
p,q € M. For a differentiable function f : M?rightarrowR, Pini [12] defined
invexity in the following manner.

Definition 2.8. The differentiable function f is said to be n-invex or invex on
a differentiable manifold M if for any z,y € M,

f(@) = fly) = dfy(n(z,y))- (2)
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Later on Mititelu [11] generalized the above definition as follows.

Definition 2.9. The differentiable function f is said to be (p, n)-invex at y if
there exist an n: M x M — TM and p € R such that

Vo € M f(2) = f(y) = dfy(n(z,9)) + pd* (2, ). (3)
Definition 2.10 ([4]). A closed n-path joining the points y and u = ay (1) is
a set of the form Py, = {v:v=«(t):t € [0,1]}.
3. p-(p,r)-Invexity

Definition 3.1 (Mandal and Nahak(2011)). Let f : R® — R be a differentiable
function and p,r be arbitrary real numbers, p € R. The function f is said to be
(p,7) — p — (n,0)-invex with respect to 1,60 : R™ x R™ — R™ at u, if any one of
the following conditions holds

(O 1) 2 ST (@) 1) 4+ plola ), forp#0, T £0, (4)

(eTU(m)ff(“)) —1) > Vf(un(z,u) + p|\9(:c,u)|\27 forp=0, r#0, (5)

I 3=

fla) = flu) = %Vf(U)(e’"’(z’") — 1)+ pllf(z, w)|*, for p#0, r=0,  (6)

F(@) = f(w) = Vf(w)n(z,u) + pll6(z,w)|*, for p=0, r=0. (7)

Here the exponentials appearing on the right-hand sides of inequalities above
are understood to be taken componentwise and 1 = (1,1, ...,1).
Motivated by the (p,r) — p — (1, 0)-invex function, we introduce the p — (p,r)-
invex function and study the sufficient optimality conditions and duality results
(weak, strong and converse duality) for optimization problems defined on a differ-
entiable manifold. Throughout the rest of the paper M denotes an n-dimensional
differentiable manifold of class r.

Definition 3.2. Let M be an n-dimensional differentiable manifold and f :
M — R be a differentiable function. Let n be a map n : M x M — TM
such that n(z,u) € T, M for all x,u € M. The exponential map on M is a
map exp, : T,M — M and the differential of the exponential map (dexp,)q
To(T M) = T,M — T.M, where a = ton(x,u),to € [0,1], and ¢ € Py, where
P, is a closed path joining the point z and u. Let p,r and p be arbitrary real
numbers. If for all x € M, the relations

U@ 1) > Caf(despalpn(a, )] D+ () (8)
for p £0,r #0,

%(e’“(ﬂ”—ﬂ“” —1) > dfu(n(z,w)) + pd*(z,u), for p=0, r #0, 9)

£@) = () > SAf((@eap)aona )] = 1)+ pa ), (10)

for p£0,r =0,
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f@) = f(u) > dfu(n(@,w)) + pd*(z,u), for p=0, r=0,  (11)
hold, then f is said to be p — (p,r)-invex function at v on M. Here I € T.M
such that for a co-ordinate chart ¢, ¢(I) =1, where 1 = (1,1,...,1).
Note

1. If p > 0, then we call the functions as “strongly p — (p, r)-invex” func-
tions.
2. If p = 0, then the functions reduce to “(p,r)-invex” functions.
3. If p < 0, then we call the functions as “weakly p— (p, r)-invex” functions.
It is clear that every strongly p — (p, r)-invex function is (p, r)-invex but weakly
p— (p, r)-invex function is not (p, r)-invex in general. We construct the following
counter example.

Example 3.3. We consider the circle S = {(z,y) € R? : 22 4+ y* = 182} of the
Euclidean space R2. In the case of the circle S the possible co-ordinate charts
are

Ur={(z,y) 12 >0} ¢1(z,y) =y, U2={(z,y):2 <0} d2(z,y) =y
Us ={(2,y) 1y > 0} d3(z,9) =2, Us={(z,y):y <0} ¢u(z,y) =2
Let x = (z1,z2) € S and we define a differentiable function f on S by f: S — R,

f(z) = —z1 4+ cosza. Let u = (u1,u2) € S and the angle between z and u is
6°, (6 > 1). Hence d(z,u) = % = % = .31436. The tangent space of S

at u is the set T, = {v € R? : w-v = 0}. We choose 7 : S x S — T,S as
n(z,u) = (—ug,u1) € T,S. Let a = n(x,u) = (—uz,u1). We now find df,(a).
We take a chart ¢3(—usg,u1) = ¢(—ug,u1) = ug at a and the identity mapping
as a chart ¢ at f(a). Here both S and R are of dimension 1. We now find the
Jacobian matrix 1p0f0¢_1 at ¢(a )

dﬂ;(i)() ¢(wof> =

ie., dfu(n(z,u)) = 1. Now el @)= _1_df,(n(x,u))—pd?(z,u) = e/ () —F()
1—1—(.3143)2p62 > —2 — .0987p6? (since ef @ =f () > (). If we take p = —50,
then e/ @ =F(W) —1 —df, (n(z,u)) — pd?(z,u) > —2+4.9350% > 0, Va,u € S (we
take § > 1). Hence f is ((-50)-(0,1))-invex on S, i.e., f is weakly 50— (0, 1)-invex.
But if we take 2 = (15,3v/11) € S, u = (15, =3/11) € S, then e/(*)=F(v) _1
dfu(n(z,u))=1-1-1=-1<0, ie., fis not (0,1)-invex on S.

(f(—u27u1)) = aiw(uQ +cosup) = 1.

3.1. Sufficient Optimality Conditions. Recently, many traditional opti-
mization methods have been successfully generalized to minimize objective func-
tions on manifolds. Consider the following primal optimization problem on a
differentiable manifold M
P) Minimize f(x)

subject to g;(x) <0, i=1,...,m,
where f: M — R, g;: M — R, i =1,...,m are differentiable functions. Let D
denote the set of all feasible solutions of (P).
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Let Z € D be an optimal solution of (P) and we define the set J° = {j €
1,...,m : gj(Z) = 0}. Suppose that the domain D satisfies the following con-
straint qualification [11] at Z:

R(Z):FveTM :d(gje)z(v) <0.

Here d(gjo)z(v) is the vector components of d(g;)z(v), Vj € J°, taken in in-
creasing order of j.

Mititelu [11] established necessary and sufficient conditions of Karush-Kuhn-
Tucker (KKT) [10] type for a vector programming problem on a differentiable
manifold.

Lemma 3.4 ([11]). (Necessary Karush-Kuhn-Tucker (KKT) condition) If a
feasible point T € M is an optimal solution of the problem (P) and satisfies the
constraint qualification R(Z), then there exists multiplier &€ = (&1,...,&m)T € R™,
such that the following conditions hold

¢hg(x) =0, (13)
£€>0,i=1,2,...,m, (14)

here g = (917927 “‘7gm)T~

Theorem 3.5. (Sufficient Optimality Condition) Assume that a point T € M
is feasible for problem (P), and let the KKT conditions (12)-(14) be satisfied at
(z,€). If the objective function f and the function T g are py — (p,r)-inver and
p2 — (p,7)-invex, respectively at T on D with respect to the same function n with
(p1 + p2) > 0, then T is an optimal solution of the problem (P).

Proof. Let x be a feasible point for the problem (P). Since f and ¢7g are
p1— (p,r)-invex and ps — (p, r)-invex, respectively at Z on D with respect to the
same function 7, V& € D, we have

1 - 1

LU 1) > af(deaps (ol ) D) + (7). (15)
L or(eTg(@)—€" (@) & . 2 -
;(e g 9&) —1) > ?dgi(d(ewpi(pn(x,x))) — 1)+ pod®(z,Z). (16)
Adding (15) and (16) we have

L@ 1) _ 1 4 g€ o@—€To@) _ )]
r

> %(dfi + €7 dgs) (d(expu (pn(z, 7)) — T) + (p1 + pa)d2(z, 7).

By KKT conditions and as (p1 + p2) > 0, we have

1 r(f(x)—f(z 1 (€T g(z
;[(e f@)=F@) _ 1] > ;(1—6 (€ 9@y, (17)
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Without loss of generality, let » > 0 (in the case when r < 0 the proof is
analogous; one should change only the direction of some inequalities below to
the opposite one). Since z is a feasible solution of the problem (P), then g(x) <0
and £ > 0 imply that (1 — er(ng(x))) > 0. From which we get e"(/(#)=F(#)) > 1,
Hence f(z) > f(Z) holds for all feasible € D of the problem (P). Therefore,
T is an optimal solution of the problem (P). (]

3.2. Mond-Weir Type Duality. Duality theory is the central part of op-
timization. In several optimization problems evaluating the dual maximum is
comparatively easier than solving a primal minimization problem. Udriste [14]
first introduced the concept of duality for a convex programming problem on a
Riemannian manifold. Ferrera and Mititelu [5] developed a duality of Mond-Weir
type for a vector mathematical programming problem involving invex functions
on a differentiable manifold. In our work, we establish the duality results for
the primal problem (P) involving p — (p, r)-invex functions over a differentiable
manifold.

For the optimization problem (P), the Mond-Weir type dual problem [5]
(MWD) is defined in the following form

(MWD) Maximize f(u)
subject to df, +ydg, =0,

yTg(u) >0, y € RT,

where f,g; : M — R, i =1,2,...,m are differentiable functions. Let W7 denote
the set of all feasible solutions of (MWD).

Remark 3.1. Throughout the remaining sections of this paper, without loss of
generality, we assume r > 0 (in the case when r < 0 the proof is analogous; one
should change only the direction of some inequalities to the opposite one but
finally will get same results). The theorems will be proved only in the case when
p # 0,7 # 0 (other cases can be dealt with likewise).

We have established the following duality results between (P) and (MWD).

Theorem 3.6. (Weak Duality) Let x and (u,y) be the feasible solutions of (P)
and (MWD), respectively. Moreover, assume that f and y*g are p1 — (p,7)-
inver and pa — (p,r)-invex, respectively at u on M with respect to the same 1
and (p1 + p2) > 0, then inf (P) > sup (MWD).

Proof. Since f and yTg are p; — (p,7)-invex and py — (p, r)-invex, respectively
at u with respect to the same 7, we have

U@ 1) > Saf, deap (pole, ) = 1)+ ), (8)

T

1
;(er(yTg(z)—yTg(u)) -1)> %dgu(d(expu(pn(x,u))) 1)+ pgdz(x,u). (19)
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Adding (18) and (19) we get
1
T

> %(dfu + y"dgu) (d(expu (pn(z,u))) — 1) + (p1 + p2)d* (2, w).

[(erF@=f() _ 1 4 erwha(x)—yTg(w) _ 1)]

Since (u,y) is a feasible solution of (MWD) and (p; + p2) > 0, we get

1 1 T

ZHerf@=Fw) _ 11> Z (1 — (¥ 9(@))y 20
e 2 L1 e (20)
Since z is a feasible solution of (P) and y” > 0, then we have (1 —e"¥ 9(*)) > 0
= @) > 1,

= f(z) > f(u) holds for Vx € D and u € Wi.

Therefore, inf (P) > sup (MWD). O

Theorem 3.7. (Strong Duality) Let T be an optimal solution of the problem (P)
at which a constraint qualification R(Z) be satisfied. Then there exists & € R
such that (Z,€) is a feasible solution of (MWD). Suppose that the hypotheses of
the Weak Duality Theorem 3.6 hold, then (Z,€) is an optimal solution of the dual
programming problem (MWD), and the objective values of (P) and (MWD)
are equal.

Proof. Since a constraint qualification R(Z) is satisfied at Z, then from the KKT
necessary conditions (12)-(14), 3 ¢ such that (Z,€) is a feasible solution of
(MWD). Since the conditions of the Weak Duality Theorem 3.6 hold, then
(z,€) is an optimal solution of the dual problem (MWD) and the objective
values of (P) and (MWD) are equal. O

Theorem 3.8. (Converse Duality) Let (@, y) be an optimal solution of the dual
problem (MWD) such that uw € D. If f and yTg are py — (p,7)-invexr and py —
(p, 7)-invez, respectively at @ on M, with respect to the same n with (p1+p2) > 0.
Then @ is an optimal solution of (P).

Proof. Since f and yTg are p; — (p,r)-invex and py — (p,r)-invex, respectively
at u with respect to the same 7, we have

1 - 1
;(6“”‘"”)_“")) -1)= Edfa(d(empa(pn(xﬂ))) ~D+pd*(z,a), (21)
1 T T — T
~ (e a0=v @) _ 1) > Y qgy (d(expa(pn(z, ) — 1) + pod?(z, @) (22)
T p
Adding (21) and (22) we get

L@@ g 4 e o) —y"o(m) _ ),
"

> =(dfa + y" dga)(d(expa(pn(z, @) — I) + (p1 + p2)d*(z, ).

S
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Using feasibility of (u,y) and since (p1 + p2) > 0, we have
Lert@=r@) _qy > L _ grvote)y

r r
Since x € D and y > 0 we have, 1 — eV 9@ >0 = e (f@-f@) > 1 = f(z) >
f(@). So @ is an optimal solution of (P). O

3.3. Wolfe Type Duality. Motivated by the classical Wolfe type duality [10],
for the optimization problem (P), we define the Wolfe type dual (WD) in the
following form

(WD) Maximize f(u)+ Z &igi(u

subject to df, + Zfidgm =0,
i=1
&‘ Z 0, 1= 1,2,...,m,
where f,g; : M — R, ¢ =1,2,...,m are differentiable functions. Let W5 be the
set of all feasible solutions of (WD).
We have proved the following duality results between (P) and (WD).

Theorem 3.9. (Weak Duality) Let x and (u,§) be feasible solutions for (P)
and (WD), respectively. Moreover, assume that f and >, &g; are pr— (p,r)-
inver and py — (p, —r)-invex, respectively at w on M with respect to the same 1)
with (p1 + p2) > 0, then inf (P) > sup (WD).

Proof. Since f and Y ;- &g; are p1 — (p,r)-invex and ps — (p, —r)-invex with

respect to the same 7, we have

U@ 1) > 2af, (Aeap ol i) =T + ), (23)

S so@-Sn o) _q)

r

e 29
Z; Z gzdglu 633pu(p77($7 U))) - I) + p2d2 (Z‘, U)
Adding (23) and (24), we get
;[(er(f(w)—f(U)) — 14 e "(ELi &i0i(@) =30, Ligi(w) 4 1))
(25)

dfu + Zgzdglu expu(pﬁ(x’u))) - I) + (/01 + pg)dQ(l‘, u)

i=1
Since (u, f) is a feasible solution of (WD), we have

m

i=1
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Again (p1 + p2) > 0, hence
U@ —F ) 5 (= S G0 @)+, Eii(w) (26)

Since z is a feasible solution of (P) and & > 0, we have Y. | &¢:(x) < 0. Hence
erF@=f () > or(Zit, Gigi(w)

= f(z) = f(u) > Zfigi(u)a

= f(z) > flu)+ ) &igi(u)
i=1
holds for Vz € D and u € Wy. Therefore, inf (P) > sup (WD). O

Theorem 3.10. (Strong Duality) Let T be an optimal solution of the problem
(P) at which a constraint qualification R(Z) be satisfied. Then there exists & €
RT such that (Z,€) is a feasible solution of (WD). Suppose that the hypotheses
of the Weak Duality Theorem 3.9 hold, then (Z,£) is an optimal solution of the
dual programming problem (WD), and the objective values of (P) and (WD)
are equal.

Proof. Since a constraint qualification R(Z) is satisfied at Z, then from the KKT
necessary conditions (12)-(14), 3 £ such that (Z, £) is a feasible solution of (WD).
Since the conditions of the Weak Duality Theorem 3.9 hold, then (Z,£) is an
optimal solution of the dual problem (WD) and the objective values of (P) and
(WD) are equal. O

Theorem 3.11. (Converse Duality) Let (u,&) be an optimal solution of the
dual problem (WD) such that w € D. If f and Y.i*, &g; are p1 — (p,7)-invex
and ps — (p, —r)-invez, respectively at uw on M with respect to the same 1 with
(p1 + p2) > 0. Then u is an optimal solution of (P).

Proof. We prove it by contradiction. Let u is not an optimal solution of (P).
Hence 3z € D 3 f(z) < f(u). Since (u, &) is an optimal solution of (WD), we
have

F)+Y Ggi(w) > f2)+ > &igila), (27)
i=1 i=1

or, f(@) = fu) < = &g (@) + 3 &igalu). (28)
i=1 i=1

Since f is p1 — (p, r)-invex and >, &g is p2 — (p, —7)- invex we have from (26)
e (f(@)=f(u) > or(= St &igi(x)+307 &9@'(“))’

= Jla) = ) > = Y gila) + D i)

which is a contradiction to (28). Hence u is an optimal solution of (P). O



Optimality Conditions and Duality Results of the Nonlinear Programming Problems 501

3.4. Mixed Type Duality. For the problem (P), we consider the mixed type
dual problem (MDP) in the following form

(MDP) Mazximize f(u)+ i &igi(u)
i=1

m

subject to df, + Z&dgz‘u =0,

i=1

Zfz‘gi(u) >0,6>0,i=1,2,..,m.
i=1

Let W3 be the set of all feasible solutions of (MDP).

We have established the following duality results between (P) and (MDP),
whose proofs are omitted as they are very similar to Theorem 3.9 to Theorem
3.11.

Theorem 3.12. (Weak Duality) Let x and (u,&) be feasible solutions for (P)
and (MDP) respectively. Moreover, we assume that f and > ;- &g; are py —
(p,7)-invex and ps — (p, —r)-invex, respectively at u on M with respect to the

same n with (p1 + p2) > 0, then inf (P) > sup (MDP).

Theorem 3.13. (Strong Duality) Let T be an optimal solution of the problem
(P) at which a constraint qualification R(Z) be satisfied. Then there exists £ €
RT, such that (Z,&) is a feasible solution of (MDP). Suppose that the hypotheses
of the Weak Duality Theorem 3.12 hold, then (Z,€) is an optimal solution of the
dual programming problem (MDP), and the objective values of (P) and (MDP)
are equal.

Theorem 3.14. (Converse Duality) Let (u,&) be an optimal solution of the
dual problem (MDP) such that w € D. If f and Y ;- &g; are p1 — (p,r)-invex
and py — (p, —r)-invez, respectively at u on M with respect to the same n with
(p1 + p2) > 0. Then u is an optimal solution of (P).

4. Conclusions

The notion of p — (p,r)-invex functions on differentiable manifolds is intro-
duced in this paper which generalizes invex functions. We establish optimality
conditions and duality results under p— (p, r)-invexity assumptions for a general
nonlinear programming problem that is built upon on differentiable manifolds.
In future we aim to study variational problems and control problems on differ-
entiable manifolds under generalized invexity assumptions.
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