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THE LOWER BOUNDS FOR THE FIRST EIGENVALUES OF

THE (p, q)-LAPLACIAN ON FINSLER MANIFOLDS

Sakineh Hajiaghasi∗ and Shahroud Azami

Abstract. In this paper, we study the nonlinear eigenvalue problem

for some of the (p, q)-Laplacian on compact Finsler manifolds with zero
boundary condition, and estimate the lower bound of the first eigenvalues

for (p, q)-Laplace operators on Finsler manifolds.

1. Introduction

Finsler geometry is a natural generalization of Riemannian geometry that
has no quadratic restriction. Since more than twenty years ago, substantial
progress has been made in Finsler geometry and has developed rapidly in its
global aspects, especially in the study of the Finsler Laplacian and it has been
seen that methods in Finsler geometry are closely related to other mathematical
branches such as Lie groups, nonlinear analysis and have so many applications
to mathematical physics, theoretical physics, and many other fields. All in all,
Finsler geometry has a broader applications in natural science.

There are several definitions of Finsler Laplacian, including nonlinear Lapla-
cian, mean-value Laplacian, and so on. Since the investigation about the first
eigenvalue of Laplace in Finsler manifolds plays an important role in Finsler
geometry; (for instance see [27] for a characterization of the structure of the
manifold by finding it’s isometric spaces), heretofore so many eigenvalue com-
parison theorems such as Faber-Kahn type inequality, Cheng type inequality,
Cheeger type inequality, and Mckean type inequality have been established
[10, 13, 19, 21]. Afterward, Yin and He in [22, 23] improved further results.
Up to now, there has been some progress on the Finsler p-Laplacian which
was stated in the early 2010s by Belloni et al. [6, 7]. They worked on the
p-Laplace eigenvalue problem as p→ ∞. After that, Kawohl and Novaga stud-
ied a special p-Laplacian in a reversible Minkowski space as p → 1. We refer
to [14, 24, 25, 26] for more information about the first eigenvalue of Finsler
p-Laplacian.
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2. Preliminaries

Let M be an n-dimensional smooth manifold and π : TM → M be the
natural projection from the tangent bundle TM . Let (x, y) be a point of TM
with x ∈ M , y ∈ TxM , and let (xi, yi) be the local coordinate on TM with

y = yi
∂

∂xi
. A Finsler metric on M is a function F : TM → [0,∞) satisfying

the following properties:
(i) Regularity: F is C∞ on the entire slit tangent bundle TM \ {0}.
(ii) Positive homogeneity: F (x, λy) = λF (x, y) for all λ > 0.
(iii) Strong convexity: The n× n Hessian matrix

(gij) :=

([1
2
F 2
]
yiyj

)
is positive definite at every point of TM \ {0}. Let V = V i ∂

∂xi
be a non-

vanishing vector field on an open subset U ⊂ M . One can introduce a Rie-
mannian metric g̃ = gV on the tangent bundle over U as follows:

gV (X,Y ) := XiY jgij(x, v), ∀X = Xi ∂

∂xi
, Y = Y i ∂

∂xi
.

Let ∇V be the Chern connection, and then, the Chern curvature RV (X,Y )Z
for vector fields X,Y, Z on U is defined by:

RV (X,Y )Z := ∇V
X∇V

Y Z −∇V
Y ∇V

XZ −∇V
[X,Y ]Z.

For a flag (V,W ) consisting of non-zero tangent vectors V,W ∈ TxM and a
2-plane P ⊂ TxM with V ∈ P the flag curvature K(V,W ) is defined as follows:

K(V,W ) :=
gV (R

V (V,W )W,V )

gV (V, V )gV (W,W )− gV (V,W )2
,

where, W is a tangent vector such that V,W span the 2-plane P and V ∈ TxM
is extended to a geodesic field, i.e., ∇V

V V = 0 near x. The Ricci curvature of
V is defined as:

Ric(V ) =

n−1∑
i=1

K(V, ei),

where e1, · · · , en−1,
V

F (V )
form an orthonormal basis of TxM with respect to

gV , namely, one has Ric(λV ) = Ric(V ) for any λ > 0.
The reversible function λ :M −→ R is defined by:

λ(x) = max
y∈TxM\0

F (y)

F (−y)
.

It is clear that 1 ≤ λ(x) < +∞ for any x ∈ M . Here λF = supx∈M λ(x) is
called the reversibility of (M,F ), and (M,F ) is called reversible if λF = 1.



84 Sakineh Hajiaghasi and Shahroud Azami

The gradient vector field of a differentiable function f onM by the Legendre
transformation L : TxM → T ∗

xM is defined as

∇f := L−1(df).

Let U = {x ∈M : ∇f |x ̸= 0}. We define the Hessian H(f) of f on U as follows:

H(f)(X,Y ) := XY (f)−∇∇f
X Y (f), ∀X,Y ∈ Γ(TM |u).

For a given volume form dµ = σ(x)dx and a vector V ∈ TxM \ {0}, the
distortion of M is defined by

τ(V ) := ln

√
det(gij(V ))

σ
.

Considering the rate of changes of the distortion along geodesics leads to the
so called S-curvature as follows:

S(V ) :=
d

dt
[τ(γ(t), γ̇(t)]t=0,

where γ(t) is the geodesic with γ(0) = x and γ̇(0) = V . Define

Ṡ(V ) := F−2(V )
d

dt
[S(γ(t), γ̇(t)]t=0.

Fix a volume form dµ = σ(x)dx, the divergence div(X) of a smooth vector field
X is defined as:

div(X) := Σn
i=1

(
∂Xi

∂xi
+Xi ∂ log σ

∂xi

)
.

For a given smooth function f :M −→ R, the Laplacian ∆f of f is defined by
∆f = div(∇f) = div(L−1(df)).

2.1. Eigenvalue of (p, q)-Laplacian

The Finsler p-Laplacian of a smooth function f :M → R can be defined by

∆pf := div(|∇f |p−2∇f).

Since the gradient operator ∇ is not a linear operator in general, the Finsler
p-Laplacian is greatly different from the Riemannian p-Laplacian.

Given a vector field V such that V ̸= 0 on Mu = {x ∈ M ; du(x) ̸= 0},
the weighted gradient vector and the weighted p-Laplacian on the weighted
Riemannian manifold (M, gV ) are defined by

▽V f :=

gij(V )
∂f

∂xj
∂

∂xi
, on Mu,

0, on M \Mu,
∆V

p f := div(|∇V f |p−2∇V f).

Here we note that ∇f = ∇V f , ∆pf = ∆V
p f .

In this paper, we introduce the following nonlinear system in Finsler manifolds
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which had been introduced in [5] for the Riemannian case:
∆V

p u = −λ|u|α|v|βu inM
∆V

q v = −λ|u|α|v|βv inM
(u, v) ∈W 1,p(M)×W 1,q(M),

(1)

where p, q > 1 and α, β are numbers satisfying

α > 0, β > 0,
α+ 1

p
+
β + 1

q
= 1.

Here, we say that λ is the eigenvalue of (1), when for some u ∈ W 1,p
0 (M) and

v ∈W 1,q
0 (M), we have∫

M

(F ∗(du))p−2gV (∇u,∇ϕ)dµ = λ

∫
M

|u|α|v|βvϕdµ,

and ∫
M

(F ∗(dv))q−2gV (∇v,∇ψ)dµ = λ

∫
M

|u|α|v|βuψdµ,

where ϕ ∈ W 1,p(M), ψ ∈ W 1,q(M) and W 1,p
0 (M) is the closure of C∞

0 (M) in
Sobolev space W 1,p(M). Here (u, v) is called eigenfunctions. A first positive
eigenvalue of (1) depends on fixed vector field V considered as follows

λ1,p,q = inf{A(u, v) : (u, v) ∈W 1,p
0 (M)×W 1,q

0 (M), B(u, v) = 1},
where

A(u, v) =
α+ 1

p

∫
M

(F ∗(du))pdµ+
β + 1

q

∫
M

(F ∗(dv))qdµ,

B(u, v) =

∫
M

|u|α|v|βuvdµ.

Let (M,F ) be an n-dimensional Finsler space and {bi}ni=1 be an arbitrary basis
for TxM . Let

Bn := {(yi) ∈ Rn, F (Σn
i=1y

ibi) < 1},
and

Bn−1 := {(ya) ∈ Rn−1, F (Σn
a=2y

aba) < 1}.
Both Bn and Bn−1 depend on the choice of {ba}na=2. Define

ζ(y) :=
V ol(Bn)

V ol(Bn−1)
.
V ol(Bn−1)

F (y)V ol(Bn)
.

The function ζ is independent of the choice of basis. Now, we could state the
following co-area formula from [18].

Theorem 2.1. Let (M,F ) be a Finsler space and N be a hypersurface in
M . Let φ be a piecewise C1 function on M such that every φ−1(t) is compact.
Then for any continuous function f on M , we have

(2)

∫
M

fF ∗(dφ)dµ =

∫ ∞

−∞

(∫
φ−1(t)

fdv

)
dt.
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Where dv := φdAF , is called the induced volume form by dµ with respect to
the normal vector field n along N , dAF := ζ(n)dµ.

Also we may need the Hölder inequality

(3) ∥fg∥1 ≤ ∥f∥p∥g∥q,
for measurable functions f , g and p, q ∈ [1,∞) with 1

p + 1
q = 1.

3. Main results

There are so many papers that investigate properties of the spectrum of
Laplacian and estimate other geometric quantities aspects of the Riemannian
manifoldM (see for example [1], [11], [12], [16], [20]). The existence, simplicity,
stability and some other properties of the first eigenvalue of (p, q)-Laplacian
have been studied on Riemannian manifolds in [2, 3, 8, 15, 17]. In this paper, we
want to study the nonlinear eigenvalue problem for some of the (p, q)-Laplacian
on compact Finsler manifolds with zero boundary condition that had been
studied for the Riemannian manifolds in [5]. In this section we prove our main
results as follows:

Theorem 3.1. Let (M,F, dµ) be a complete, reversible and simply con-
nected Finsler manifold with constant flag curvature K. Take Br(x) as a
geodesic ball of radius r, centered at x, such that V ol(M) = V ol(Br(x)). Then
the following estimate holds for the first eigenvalue of (1)

λ1,p,q(M) ≥ λ1,p,q(Br(x)),

the equality holds if and only if M = Br(x).

Proof. Suppose that (u, v) be the pair of positive eigenfunctions related to
λ1,p,q(M). Let Mt = {x ∈ M : u(x) > t} and Γt = {x ∈ M : u(x) = t}.
We construct geodesic balls Bt such that V ol(Bt) = V ol(Mt) for each t, and
Br := B0. We define a radially decreasing function u∗ : Br → R+ (for all
ρ ∈ So(n), u∗ ◦ ρ = u∗) and Γ∗

t = {x ∈ Br : u∗(x) = t}. We denote the
(n− 1)-dimensional volume element of Γt and Γ∗

t by dΓt and dΓ
∗
t respectively.

Here we have the following identities for the volume element dΓt and dΓ
∗
t :

(4)
d

dt
V ol(Mt) = −

∫
Γt

dΓt

F ∗(du)
,

d

dt
V ol(Bt) = −

∫
Γ∗
t

dΓ∗
t

F ∗(du∗)
.

Hence, by the Co-area formula (2), we have∫
M

updµ =

∫ ∞

0

∫
Γt

up

F ∗(du)
dΓtdt =

∫ ∞

0

tp
d

dt

(∫
Γt

dΓt

F ∗(du)

)
dt

= −
∫ ∞

0

tp
d

dt
V ol(Mt)dt = −

∫ ∞

0

tp
d

dt
V ol(Bt)dt

=

∫ ∞

0

tp

(∫
Γ∗
t

dΓ∗
t

F ∗(du∗)

)
dt =

∫
Br

(u∗)pdµ.
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Now, using Hölder inequality (3), we obtain∫
Γt

dΓt =

∫
Γt

(F ∗(du))
p−1
p (F ∗(du))

1−p
p dΓt

≤
(∫

Γt

(F ∗(du))p−1dΓt

) 1
p
(∫

Γt

(F ∗(du))−1dΓt

) p−1
p

.

Note that Br ⊂M , thus based on the definition of u∗ it is obvious that

(5)

∫
Γt

dΓt ≥
∫
Γ∗
t

dΓ∗
t .

So, using Co-area formula (2) for gradient, by (4) and (5), we have∫
M

(F ∗(du))pdµ =

∫ ∞

0

∫
Γt

(F ∗(du))p−1dµ ≥
∫ ∞

0

(
∫
Γt
dΓt)

p

(
∫
Γt
F ∗(du)−1dΓt)p−1

dt

≥
∫ ∞

0

(
∫
Γ∗
t
dΓ∗

t )
p

(
∫
Γ∗
t
F ∗(du∗)−1dΓ∗

t )
p−1

dt

=

∫ ∞

0

(∫
Γ∗
t

(F ∗(du∗))p−1dΓ∗
t

)
dt

=

∫
Br

(F ∗(du∗))pdµ.

Here in the third line we have used the following equation from [26]:

(6)

(∫
Γ∗
t

dΓ∗
t

)p

=

(∫
Γ∗
t

F ∗(du∗)−1dΓ∗
t

)p−1(∫
Γ∗
t

F ∗(du∗)p−1

)
.

The same way leads to∫
M

(F ∗(dv))qdµ ≥
∫
Br

(F ∗(dv∗))qdµ,

where v∗ defined like u∗. Therefore

λ1,p,q(M) =
α+ 1

p

∫
M

(F ∗(du))pdµ+
β + 1

q

∫
M

(F ∗(dv))qdµ

≥ α+ 1

p

∫
Br

(F ∗(du∗))pdµ+
β + 1

q

∫
Br

(F ∗(dv∗))qdµ

= λ1,p,q(Br).

For the next result, we need to recall the Cheeger constant h(M) from [27]
which defines as follows:

h(M) := inf
M′

(minV ol+(∂M
′
), V ol−(∂M

′
))

V ol(M′)
.
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Here M′
ranges over all open submanifold of M with compact closure in M

and smooth boundary ∂M′
, vol(M′

) denotes the volume of M′
, vol−(∂M

′
)

and vol+(∂M
′
) denote the volume of ∂M′

with respect to outward and inward
normal vector respectively.

Theorem 3.2. Let (M,F, dµ) be a complete (forward or backward) Finsler
n-manifold. For any bounded domain M with piecewise smooth boundary in
M , the first eigenvalue of (1) satisfies:

λ1,p,q(M) ≥ α+ 1

p

(
h(M)

p

)p ∫
M

|u|pdµ+
β + 1

q

(
h(M)

q

)q ∫
M

|v|qdµ,

where (u, v) be the pair of positive eigenfunctions corresponding to λ1,p,q(M).

Proof. First we need to take some notations just like the last theorem.
Suppose that (u, v) be the pair of positive eigenfunctions related to λ1,p,q(M).
Let Mt = {x ∈ M : u(x) > t} and Γt = {x ∈ M : u(x) = t}. We construct
geodesic balls Bt such that V ol(Bt) = V ol(Mt) for each t, and Br := B0.
Here dΓt denotes the (n− 1)-dimensional volume element of Γt. Using co-area
formula for φ ∈ C1(M), (φ|M > 0, φ|∂M = 0), we obtain∫

M
F ∗(dφ)dµ =

∫ ∞

−∞

(∫
Γt

dΓt

)
dt

=

∫ ∞

−∞
V ol(∂Mt)dt

=

∫ ∞

−∞

V ol(∂Mt)

V ol(Mt)
V ol(Mt)dt

≥ inf
t

(
V ol(∂Mt)

V ol(Mt)

)∫ ∞

−∞
V ol(Mt)dt

≥ h(M)

∫
M
φdµ.

Suppose φ = up, by Hölder inequality, we get

h(M)

∫
M
updµ ≤

∫
M
(F ∗(du))pdµ

= p

∫
M
up−1F ∗(du)dµ

≤ p

(∫
M

|up|dµ
)p− 1

p
(∫

M
F ∗(du)pdµ

)1

p
.

So ∫
M
F ∗(du)pdµ ≥

(
h(M)

p

)p ∫
M

|u|pdµ.
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Similarly ∫
M
F ∗(dv)qdµ ≥

(
h(M)

q

)q ∫
M

|v|qdµ.

This completes the proof.

In the following, we remind another class of (p, q)-Laplacian which defines in
the same way for finsler manifold like Riemannian manifolds [8]:

(7) ∆∇u
p u+∆∇u

q u = div(((F ∗(du))p−2 + (F ∗(du))q−2)∇u),

where u ∈W =W 1,p
0 (M)∩W 1,q

0 (M) and 1 < q < p <∞. We call λ ∈ R as an
eigenvalue of (7), if there is u ∈ W , u ̸= 0 such that −∆pu −∆qu = λ|u|p−2u
or equivalently∫

M

(F ∗(du))p−2gV (∇u,∇v)dµ+

∫
M

(F ∗(du))q−2gV (∇u,∇v)dµ

= λ

∫
M

|u|p−2uvdµ,

for any v ∈W 1,p(M) ∩W 1,q(M).
The first positive eigenvalue λ1,p,q(M) of (7) is obtained as follows:

(8) λ1,p,q(M) = inf

{∫
M

(F ∗(du))pdµ+

∫
M

(F ∗(du))qdµ :

∫
M

|u|pdµ = 1

}
.

Immediately, we could prove the next result just like Theorem 3.1. Therefore
the proof is omitted.

Corollary 3.3. LetM be a domain in a complete, simply connected Finsler
manifold M of constant flag curvature and Br(x) be a geodesic ball of radius
r in M such that V ol(M) = V ol(Br(x)). Then for the first eigenvalue of M
and Br(x) depends on (8), we have

λ1,p,q(M) ≥ λ1,p,q(Br(x)).

The equality holds if and only if M = Br(x).

Theorem 3.4. Let M be the compact manifold with smooth boundary in
a complete Finsler manifold. Then for (8), considering (u, v) as the pair of
eigenfunctions corresponding to λ1,p,q(M), we have

λ1,p,q(M) ≥
(
h(M)

p

)p

+

(
h(M)

q

)q

.

Proof. From the Theorem 3.2 for eigenfunctions (u, v) > 0 corresponding
to λ1,p,q(M), we have∫

M
(F ∗(du))pdµ ≥

(
h(M)

p

)p ∫
M
updµ ≥

(
h(M)

p

)p

,

and ∫
M
(F ∗(dv))qdµ ≥

(
h(M)

q

)q ∫
M
vqdµ ≥

(
h(M)

q

)q

.
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These complete the proof.

For a compact Finsler manifold M with negative flag curvature K < 0, from
[4] we know thatM is a Riemannian manifold. Therefore we have the following
result:

Corollary 3.5. Let M be an n-dimensional complete (forward or back-
ward), simply connected Finsler manifold with negative constant flag curvature
−k. Suppose M as a domain inM . Then for (8), the following inequality holds

λ1,p,q(M) ≥
(
(n− 1)

√
−k

p

)p

+

(
(n− 1)

√
−k

q

)q

.

SinceM is Riemannian manifold, the proof is similar to that of [5, Theorem
1.5].
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