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HARNACK ESTIMATES FOR NONLINEAR BACKWARD

HEAT EQUATIONS WITH POTENTIALS ALONG THE

RICCI-BOURGUIGNON FLOW

Jian-Hong Wang

Abstract. In this paper, we derive various differential Harnack esti-
mates for positive solutions to the nonlinear backward heat type equa-

tions on closed manifolds coupled with the Ricci-Bourguignon flow, which

was done for the Ricci flow by J.-Y. Wu [30]. The proof follows exactly
the one given by X.-D. Cao [4] for the linear backward heat type equations

coupled with the Ricci flow.

1. Introduction and main results

The study of differential Harnack estimates for parabolic equations origi-
nated with the work of P. Li and S.-T. Yau [24] who developed a gradient
estimate for positive solution of the heat equation on Riemannian manifolds
with nonnegative Ricci curvature. They also derived a classical Harnack in-
equality by integrating the gradient estimate along a space-time path which
could be used to compare the solution between different space-time points.
This result was generalized to Harnack estimates for some nonlinear heat-type
equations in [33] and for non-self-adjoint evolution equations in [34].

Apart from the work of P. Li and S.-T. Yau, many authors have also proved
a variety of Harnack estimates for various equations under different geometric
flows. It is well known that R. Hamilton proved Harnack estimates for the
Ricci flow [20] and the mean curvature flow [22]. In dimension two, a Harnack
estimate for the positive scalar curvature was obtained by R. Hamilton [19], and
then extended by B. Chow [10] when the scalar curvature changed sign. The
same techniques were used to obtain Harnack estimates for the Gauss curvature
flow and the Yamabe flow in [11] and [12], respectively. B. Andrews [1] derived
several Harnack estimates for general curvature flows on hypersurfaces. H.-D.
Cao [3] proved a Harnack estimate for the Kähler-Ricci flow. R. Hamilton
[21] generalized the Li-Yau Harnack estimate to a matrix form on Riemannian
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manifolds with nonnegative sectional curvature. In [26], L. Ni also derived a
matrix Harnack estimate for the Kähler-Ricci flow by using the interpolation
techniques.

On the other hand, the Harnack estimates for forward or backward heat-
type equations coupled with the Ricci flow could be found in [6, 9, 13, 14, 16,
19, 31, 36], etc. Perhaps the most spectacular result is that G. Perelman [27]
proved a Harnack estimate for the fundamental solution to the conjugate heat
equation coupled with the Ricci flow without any curvature assumption (see
also [25] or [28] for details). Perelman’s Harnack estimate has an essential
application in proving pseudolocality theorems. However, it does not apply for
all positive solutions to the conjugate heat equation. Later, X.-D. Cao [4] and
S.-L. Kuang and Q. S. Zhang [23] established a Harnack estimate that works
for all positive solutions to the conjugate heat equation under the Ricci flow
on closed manifolds with nonnegative scalar curvature.

Motivated by the above works, we study the Harnack estimates for positive
solutions to the nonlinear backward heat-type equation

(1)
∂f

∂t
= −∆f + f ln f − γRf

on an n-dimensional closed manifold with the metric g = g(t) evolving along
the Ricci-Bourguignon flow

(2)
∂g

∂t
= −2(Ric− ρRg),

where Ric and R denoting Ricci curvature tensor and scalar curvature, respec-
tively. γ and ρ are real constants.

It is noticed that J.-Y. Wu [30] derived the Harnack estimates for the nonlin-
ear backward heat-type equation (1) coupled with the Ricci flow, and pointed
out that the equation (1) is closely related to the shrinking gradient Ricci soli-
ton according to the arguments of X.-D. Cao and Z. Zhang [7]. For a general
geometric flow, H.-X. Guo and M. Ishida proved the Harnack estimates for non-
linear forward and backward heat-type equations under various assumptions,
see [18] and [17], respectively.

The evolution equation that defined by (2) is named as the Ricci-Bourgui-
gnon flow (shortly RB flow) which was proposed by J. P. Bourguignon (see
[2], Question 3.24). As special cases, this family of geometric flows contains,
the Ricci flow (ρ = 0), the Einstein flow (ρ = 1

2 ), the traceless flow (ρ = 1
n )

and the Schouten flow (ρ = 1
2(n−1) ) on account of corresponding to Ric tensor,

Einstein tensor, traceless Ric tensor and Schouten tensor, respectively. As
stated in [8], when ρ is nonpositive, by a suitable rescaling in time, the RB flow
can be seen as an interpolation between the Ricci flow and the Yamabe flow
(see [35]), obtained as a limit when ρ → −∞. The authors of [8] also proved
that, for any ρ < 1

2(n−1) , the RB flow (2) has a unique solution for a positive

time interval on closed manifold with any initial metric g0. On the contrary,
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when ρ > 1
2(n−1) , due to the principle symbol of the operator on the right hand

side of (2) has negative eigenvalues, not allowing even a short time existence
result for the flow for general initial metric. Later, A. Fischer [15] studied a
conformal version of this flow where the scalar curvature is constrained along
the flow.

For the nonlinear backward heat-type equation (1) with γ = nρ− 1, i.e.,

(3)
∂f

∂t
= −∆f + f ln f + (1− nρ)Rf.

The corresponding linear version

∂f

∂t
= −∆f + (1− nρ)Rf

is the conjugate heat equation with respect to the RB flow. Our main theorem
is the following Harnack estimates for the equation (3).

Theorem 1.1. Let (Mn, g(t))t∈[0,T ] be a nontrivial solution to the RB flow (2)
on an n-dimensional closed manifold and f(x, t) be a positive solution to the
equation (3). Let u = − ln f , τ = T − t, δ = R−1max(0),

A(n, ρ) =
n(1− nρ)2

(
1− (n− 1)ρ

)2
4
(
(n− 1)(n+ 2)ρ2 − 2nρ+ 1

)
and

H = 2(1− nρ)
(
1− (n− 1)ρ

)
∆u−

(
(n− 1)(n− 2)ρ2 − 2(n− 1)ρ+ 1

)
|∇u|2

+ (nρ− 1)2R+ c
n

τ
.

(i) If ρ < 0 and the curvature operator is nonnegative at the initial time,
then

(4) H −A(n, ρ) ≤ 0

for all (x, t) ∈Mn × [0, T ) with T < δ
2(1−ρ) . Here

c = −2(nρ− 1)2

nρ

{
2(nρ− 1)

(
1− (n− 1)ρ

)2
(n− 1)(n+ 2)ρ2 − 2nρ+ 1

− 1

}
.

(ii) If ρ = 0 and the scalar curvature is nonnegative at the initial time, then
(4) holds for all (x, t) ∈Mn × [0, T ). Here c = −2, that is

2∆u− |∇u|2 +R− 2

τ
n− n

4
≤ 0.

(iii) If 0 < ρ < 1
2(n−1) and the curvature operator is nonnegative at the

initial time, then (4) holds for all (x, t) ∈Mn × [0, T ) with T < δ
2 . Here

c = − (1− nρ)2

2n

{
(4n+ 1)(1− (n− 1)ρ)2

(n− 1)(n+ 2)ρ2 − 2nρ+ 1
+ 1 + ρ

}
.
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Remark 1.2. (i) J.-Y. Wu [30] has also proved the same estimates as Theorem
1.1 for the case ρ = 0 (see [30, Theorem 1.6]). At this moment, The RB flow is
the Ricci flow. However, our proof follows from a straightforward computation
of evolution equation for more general Harnack quantity as was done for the
Ricci flow by X.-D. Cao [4].

(ii) One interesting feature is that our Harnack estimates are not only like
the Perelman’s Harnack estimates, but also similar to the classical Li-Yau type
Harnack estimates for the corresponding nonlinear heat equation. In fact, it is
easy to see that our Harnack estimates have the following form

(5) α∆u− β|∇u|2 + aR− C1
n

τ
− C2 ≤ 0.

Since u = − ln f , (5) can be written as

|∇f |2

f2
− C3(

fτ
f

+ ln f +R) ≤ C4
n

τ
+ C5,

where α, β, a, C1, C2, C3, C4 and C5 are positive constants only depending on
n and ρ, which is analogous to the classical Li-Yau type gradient estimate for
the nonlinear heat-type equation

∂f

∂t
= ∆f − af ln f − bf

in manifolds with fixed metrics (see [29] or [32] for details).

By means of the same arguments, we will obtain the following Harnack
estimate for the nonlinear backward heat equation without any potential.

Theorem 1.3. Suppose that g(t)t∈[0,T ] evolve along the RB flow with ρ ≤ 0
on an n-dimensional closed manifold, and f(x, t)(< 1) be a positive solution to

(6)
∂f

∂t
= −∆f + f ln f.

If the curvature operator is nonnegative at the initial time, then

|∇f |2

f2
≤ 1

τ
ln

1

f

for all (x, t) ∈Mn × [0, T ), where τ = T − t.

Remark 1.4. (i) Theorem 1.3 can be regarded as an extension of the Harnack
estimate for the equation (6) under the Ricci flow, which was obtained by J.-Y.
Wu [30].

(ii) According to the proof, it is obvious that (i) and (iii) in Theorem 1.1
and Theorem 1.3 will hold whenever the Ricci curvature is nonnegative, but in
general, the nonnegativity of the Ricci curvature is not preserved along the RB
flow except the case of dimension three. Nevertheless, the nonnegativity of the
curvature operator is preserved along the RB flow when ρ < 1

2(n−1) (see [8] for

details).
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The proof of the above theorems follows nearly from the techniques of X.-D.
Cao [4] for the Ricci flow, where calculations of evolution equation for a general
Harnack quantity and the maximum principle are employed. The main differ-
ence is that we derive the Harnack estimates for various nonlinear backward
heat equations coupled with the RB flow.

This rest of paper is organized as follows. In Section 2, we will prove the
evolution equation for a general Harnack quantity H (Lemma 2.1) and the
estimates for scalar curvature R under the RB flow (Lemma 2.3), which play a
key role in deriving main theorem. In Section 3, we will prove Theorem 1.1 and
Theorem 1.3 by modifying the Harnack quantity H, and give an application
of Theorem 1.3 which shows that any positive L1-solution of the nonlinear
backward heat equation (6) can not blow up too fast.

2. Preliminaries

In this section, we shall derive the evolution equation of a general Harnack
quantity H and the estimates for scalar curvature R under the RB flow, which
are useful to prove the main theorem.

Throughout, Mn will be taken to be a closed manifold of dimension n. Let
g(t) evolving by the RB flow, and f(x, t) be a positive solution to the nonlin-
ear backward heat equation with potential term −γR. That is, (g(t), f(x, t))
satisfies the system

(7)


∂g

∂t
= −2(Ric− ρRg),

∂f

∂t
= −∆f + f ln f − γRf,

where γ is a constant.
Let u = − ln f and τ = T − t. By a direct computation, we have

(8)
∂u

∂τ
= ∆u− |∇u|2 − γR− u.

Define the Harnack quantity

H = α∆u− β|∇u|2 + aR+ b
u

τ
+ c

n

τ
,

where α, β, a, b, c are constants.
It is easy to see that the evolution equations for the Laplace-Beltrami oper-

ator ∆ and the scalar curvature R with respect to the RB flow hold:

(9) (
∂

∂t
∆)u = 2〈Ric,∇∇u〉 − 2ρR∆u+ (n− 2)ρ〈∇R,∇u〉,

(10)
∂R

∂t
=
(
1− 2(n− 1)ρ

)
∆R+ 2|Ric|2 − 2ρR2.

Firstly, we derive the evolution equation of H which can be seen as a gen-
eralization of [4, Lemma 2.1].
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Lemma 2.1. Suppose that (g(t), f(x, t)) satisfies the system (7), and α > β >
0. Then

∂H

∂τ
≤ ∆H − 2∇H · ∇u−

(2λ(α− β)

ατ
+ 2
)
H + (4β − 2α)Ric(∇u,∇u)

+ (
b

τ
− 2βλ(α− β)

ατ
− 2βρR)|∇u|2 +

(α2ρ(nρ− 2)

2(α− β)
+ 2aρ

)
R2

+
(2aλ(α− β)

α
− λα(1− nρ)− bγ

)R
τ

+
(
2a− α2

2(α− β)
(1− nρ)

)
R(11)

+ b(
2λ(α− β)

α
− 1)

u

τ2
+ c(

2λ(α− β)

α
− 1)

n

τ2
+

(α− β)λ2

2
· n
τ2

+
(
2a+ 2βγ − (n− 2)ρα

)
〈∇R,∇u〉 −

(
αγ + 2a− 2a(n− 1)ρ

)
∆R

+
( α2

2(α− β)
− 2a

)
|Ric|2 + b · u

τ
+ (2c+

λα

2
)
n

τ
+

nα2

8(α− β)
,

where λ is a constant that will be chosen properly.

Proof. It is easy to calculate the first two terms in H by using (7), (8) and (9),

∂

∂τ
(∆u) = (

∂

∂τ
∆)u+ ∆

∂u

∂τ
= − 2〈Ric,∇∇u〉+ 2ρR∆u− (n− 2)ρ〈∇R,∇u〉

+ ∆(∆u)−∆|∇u|2 − γ∆R−∆u

and
∂

∂τ
|∇u|2 = − 2(Ric− ρRg)(∇u,∇u) + 2〈∇u,∇uτ 〉

= ∆|∇u|2 − 2|∇∇u|2 − 4Ric(∇u,∇u) + 2ρR|∇u|2

− 2〈∇u,∇|∇u|2〉 − 2γ〈∇R,∇u〉 − 2|∇u|2,

here we used the Bochner formula

∆|∇u|2 = 2|∇∇u|2 + 2〈∇u,∇∆u〉+ 2Ric(∇u,∇u).

Using (8), (10) and the Bochner formula, we have

∂H

∂τ
= α

∂

∂τ
(∆u)− β ∂

∂τ
|∇u|2 + a

∂R

∂τ
+
b

τ
uτ −

bu

τ2
− cn

τ2

= α(∆(∆u)−∆|∇u|2 + 2ρR∆u− 2〈Ric,∇∇u〉
− (n− 2)ρ〈∇R,∇u〉 − γ∆R)− β(∆|∇u|2 − 2|∇∇u|2

− 4Ric(∇u,∇u) + 2ρR|∇u|2 − 2〈∇u,∇|∇u|2〉
− 2γ〈∇R,∇u〉)− a

(
(1− 2(n− 1)ρ)∆R+ 2|Ric|2 − 2ρR2

)
+
b

τ
(∆u− |∇u|2 − γR)− b u

τ2
− c n

τ2
− α∆u+ 2β|∇u|2 − bu

τ
.
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A straightforward computation gives

∂H

∂τ
= ∆H − 2α〈∇u,∇∆u〉 −

(
αγ + a+ a(1− 2(n− 1)ρ)

)
∆R

+ 2β〈∇u,∇|∇u|2〉+
(
2βγ − (n− 2)ρα

)
〈∇R,∇u〉 − 2αRijuij

− 2(α− β)|uij |2 − 2a|Ric|2 + (4β − 2α)Ric(∇u,∇u)

− b

τ
|∇u|2 − bγ

τ
R− bu

τ2
− cn

τ2
+ 2αρR∆u− 2βρR|∇u|2 + 2aρR2

− α∆u+ 2β|∇u|2 − bu

τ
.

By the definition of H, we have

∇H · ∇u = α〈∇u,∇∆u〉 − β〈∇u,∇|∇u|2〉+ a〈∇R,∇u〉+
b

τ
|∇u|2.

This implies

−2α〈∇u,∇∆u〉+ 2β〈∇u,∇|∇u|2〉 = −2∇H · ∇u+ 2a〈∇R,∇u〉+
2b

τ
|∇u|2.

Moreover, since

− 2(α− β)|uij +
α

2(α− β)
(Rij − ρRgij)|2

= − 2(α− β)|uij |2 − 2αRijuij + 2αρR∆u

− α2

2(α− β)
|Ric|2 − α2ρ(nρ− 2)

2(α− β)
R2.

Hence,

∂H

∂τ
= ∆H − 2∇H · ∇u− 2(α− β)|uij +

α

2(α− β)
(Rij − ρRgij)|2

+
(
2a+ 2βγ − (n− 2)ρα

)
〈∇R,∇u〉 −

(
αγ + 2a− 2a(n− 1)ρ

)
∆R

+ (4β − 2α)Ric(∇u,∇u) + (
b

τ
− 2βρR)|∇u|2 − α∆u+ 2β|∇u|2(12)

+
( α2

2(α− β)
− 2a

)
|Ric|2 +

(α2ρ(nρ− 2)

2(α− β)
+ 2aρ

)
R2

− bγ

τ
R− bu

τ2
− cn

τ2
− bu

τ
.

Notice that

− 2(α− β)|uij +
α

2(α− β)
(Rij − ρRgij)−

λ

2τ
gij |2

= − 2(α− β)|uij +
α

2(α− β)
(Rij − ρRgij)|2 +

2λ(α− β)

τ

(
∆u+

α(1− nρ)

2(α− β)
R
)

− (α− β)nλ2

2τ2
,
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−2λ(α− β)

τ
∆u = −2λ(α− β)

ατ

(
H + β|∇u|2 − aR− bu

τ
− cn

τ

)
,

and

−α∆u+ 2β|∇u|2 = − 2H + α
(
∆u+

α

2(α− β)
(1− nρ)R− nλ

2τ

)
+

2bu

τ

+
(
2a− α2

2(α− β)
(1− nρ)

)
R+ (2c+

λα

2
)
n

τ
.

Using the elementary inequality and α > β > 0, then

− 2(α− β)|uij +
α

2(α− β)
(Rij − ρRgij)−

λ

2τ
gij |2

+ α
(
∆u+

α

2(α− β)
(1− nρ)R− nλ

2τ

)
≤ − 2(α− β)

n

(
∆u+

α

2(α− β)
(1− nρ)R− nλ

2τ

)2
+ α

(
∆u+

α

2(α− β)
(1− nρ)R− nλ

2τ

)
≤ nα2

8(α− β)
.

Substituting these into (12) and rearranging each terms, the desired result (11)
follows. �

In the same way. Let v = − ln f − h(τ), where h(τ) is any smooth function
on τ . Define

F = α∆v − β|∇v|2 + aR+ b
v

τ
+ c

n

τ
.

Then the following holds:

Lemma 2.2. Suppose (g(t), f(x, t)) satisfies (7) and α > β > 0. Then

∂F

∂τ
≤ ∆F− 2∇F · ∇v −

(2λ(α− β)

ατ
+ 2
)
F + (

b

τ
− 2βλ(α− β)

ατ
− 2βρR)|∇v|2

+ b(
2λ(α− β)

α
− 1)

v

τ2
+ c(

2λ(α− β)

α
− 1)

n

τ2

+
(2aλ(α− β)

α
− λα(1− nρ)− bγ

)R
τ

+ (4β − 2α)Ric(∇v,∇v)

+
( α2

2(α− β)
− 2a

)
|Ric|2 +

(α2ρ(nρ− 2)

2(α− β)
+ 2aρ

)
R2

+
(α− β)λ2

2
· n
τ2

+
bv

τ
+
(
2a− α2

2(α− β)
(1− nρ)

)
R

+ (2c+
λα

2
)
n

τ
+

nα2

8(α− β)
+
(
2a+ 2βγ − (n− 2)ρα

)
〈∇R,∇u〉

−
(
αγ + 2a− 2a(n− 1)ρ

)
∆R− bh(τ)

τ
− bh′(τ)

τ
,
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where λ is a constant.

Proof. In fact, notice that

v = u− h(τ), F = H − bh(τ)

τ
.

Therefore

∆v = ∆u, ∇v = ∇u, ∆F = ∆H, ∇F = ∇H,
and

∂F

∂τ
=
∂H

∂τ
+
bh(τ)

τ2
− bh′(τ)

τ
.

Following from the same direct computations as in the proof of Lemma 2.1, we
obtain the desired result. �

For the purpose of proving main theorem, we also have the following re-
sults about the estimates of scalar curvature R which come from the evolution
equation of R under the RB flow and the maximum principle.

Lemma 2.3. Suppose that g(t)t∈[0,T ] evolve by the RB flow on a closed mani-
fold Mn of dimension n, and the curvature operator is nonnegative at the initial
time. Let δ = R−1max(0) > 0. Then

(a) If ρ < 0 and T < δ
2(1−ρ) , then

0 ≤ R < − 1

ρτ

for all (x, t) ∈Mn × [0, T ).
(b) If 0 < ρ < 1

2(n−1) and T < δ
2 , then

0 ≤ R <
1

2τ

for all (x, t) ∈Mn × [0, T ).

Proof. The evolution of R under the RB flow is

∂R

∂t
=
(
1− 2(n− 1)ρ

)
∆R+ 2|Ric|2 − 2ρR2.

We have known that the nonnegativity of the curvature operator is preserved
by the RB flow. This implies that Ric ≥ 0, R ≥ 0, and we have |Ric|2 ≤ R2.
the evolution equation of scalar curvature satisfies

∂R

∂t
≤
(
1− 2(n− 1)ρ

)
∆R+ 2(1− ρ)R2.

Applying the maximum principle to this inequality yields

(13) R ≤ 1

δ − 2(1− ρ)t

on [0, T ), where T < δ
2(1−ρ) .
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(a) When ρ < 0 and T < δ
2(1−ρ) , we have

δ + ρT

2− ρ
− T =

δ − 2(1− ρ)T

2− ρ
> 0,

that is,

0 ≤ t < T <
δ + ρT

2− ρ
.

This is equivalent to
1

δ − 2(1− ρ)t
< − 1

ρτ
.

Hence

0 ≤ R < − 1

ρτ
.

(b) When 0 < ρ < 1
2(n−1) and T < δ

2 , (13) also holds on [0, T ) with T < δ
2 .

Moreover, since
δ

2(1− ρ)
>
δ

2
> T > t ≥ 0 >

2T − δ
2ρ

.

This is equivalent to

0 < 2τ < δ − 2(1− ρ)t.

Hence

0 ≤ R <
1

2τ
. �

3. Proof of Theorem 1.1 and Theorem 1.3

In this section, Theorem 1.1 and Theorem 1.3 will be proved which mainly
based on the above lemmas and the maximum principle. We will take suitable
constants α, β, a, b, c, λ and derive the desired conclusions.

Proof of Theorem 1.1. Fixing γ = nρ− 1 and taking into account eliminating
the terms 〈∇R,∇u〉 and ∆R in (11). Let{

2a+ 2β(nρ− 1)− (n− 2)ρα = 0,

α(nρ− 1) + 2a− 2a(n− 1)ρ = 0.

Choosing

α = 2(1− nρ)
(
1− (n− 1)ρ

)
, β = (n− 1)(n− 2)ρ2 − 2nρ+ 2ρ+ 1,

then a = (1− nρ)2 and

α− β = (n− 1)(n+ 2)ρ2 − 2nρ+ 1 > 0 when ρ <
1

2(n− 1)
.

Setting b = 0, λ = α
α−β , then (11) can be simplified as

∂H

∂τ
≤ ∆H − 2∇H · ∇u− (

2

τ
+ 2)H − 2β(ρR+

1

τ
)|∇u|2 +

nα2

8(α− β)
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+
(
c+

α2

2(α− β)

) n
τ2

+ (2c+
α2

2(α− β)
)
n

τ
+ (4β − 2α)Ric(∇u,∇u)

+
(
2a− α2

α− β
(1− nρ)

)R
τ

+
( α2

2(α− β)
− 2a

)
|Ric|2(14)

+
(α2ρ(nρ− 2)

2(α− β)
+ 2aρ

)
R2 +

(
2a− α2

2(α− β)
(1− nρ)

)
R.

(i) ρ < 0 and the curvature operator is nonnegative at the initial time.
In this case, a straightforward computation gives

α > β > 0, λ > 0, 4β − 2α < 0,
α2

2(α− β)
− 2a < 0.

Since the nonnegativity of the curvature operator is preserved along the RB
flow when ρ < 0, which implies Ric ≥ 0, R ≥ 0. Moreover, we have |Ric|2 ≤ R2.
By dropping some negative terms of (14), (14) can be reduced to

∂H

∂τ
≤ ∆H − 2∇H · ∇u− (

2

τ
+ 2)H − 2β(ρR+

1

τ
)|∇u|2 +

α2ρ(nρ− 2)

2(α− β)
R2

+
2aR

τ
+
(
c+

α2

2(α− β)

) n
τ2

+ 2aR+ (2c+
α2

2(α− β)
)
n

τ
+

nα2

8(α− β)
.

Since 0 ≤ R < − 1
ρτ which comes from (a) in Lemma 2.3, we have

∂H

∂τ
≤ ∆H − 2∇H · ∇u+

(
c+

α2

2(α− β)
+
α2(nρ− 2)

2nρ(α− β)
− 2a

nρ

) n
τ2

− (
2

τ
+ 2)H + 2

(
c+

α2

4(α− β)
− a

nρ

)n
τ

+
nα2

8(α− β)
.

Choosing c = −
(

α2

2(α−β) + α2(nρ−2)
2nρ(α−β) −

2a
nρ

)
< 0, then

∂H

∂τ
≤ ∆H − 2∇H · ∇u− (

2

τ
+ 2)H +

nα2

8(α− β)
.

Adding − nα2

16(α−β) to H, then

∂

∂τ

(
H − nα2

16(α− β)

)
≤ ∆

(
H − nα2

16(α− β)

)
− 2∇

(
H − nα2

16(α− β)

)
· ∇u

− (
2

τ
+ 2)

(
H − nα2

16(α− β)

)
− nα2

8τ(α− β)

≤ ∆
(
H − nα2

16(α− β)

)
− 2∇

(
H − nα2

16(α− β)

)
· ∇u

− (
2

τ
+ 2)

(
H − nα2

16(α− β)

)
.
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It is easy to see that H − nα2

16(α−β) < 0 for τ small enough. By using the

maximum principle yields

H − nα2

16(α− β)
≤ 0

for all τ , hence for all (x, t) ∈Mn × [0, T ) with T < δ
2(1−ρ) .

(ii) ρ = 0 and the scalar curvature is nonnegative at the initial time.
In this case, α = 2, β = 1, a = 1 and λ = 2. Hence (14) can be simplified as

∂H

∂τ
≤ ∆H − 2∇H · ∇u− (

2

τ
+ 2)H − 2R

τ
+ (c+ 2)

n

τ2
+ (2c+ 2)

n

τ
+
n

2
.

It is well known that the nonnegativity of the scalar curvature is preserved
along the Ricci flow. Choosing c = −2 and adding −n4 to H yield

∂

∂τ
(H − n

4
) ≤ ∆(H − n

4
)− 2∇(H − n

4
) · ∇u− (

2

τ
+ 2)(H − n

4
).

Notice that

H − n

4
≤ 0

for τ small enough. Applying the maximum principle yields

H − n

4
≤ 0

for all (x, t) ∈Mn × [0, T ).
(iii) 0 < ρ < 1

2(n−1) and the initial curvature operator is nonnegative.

In this case, according to the same arguments as (i), we have

α > β > 0, λ > 0, 4β − 2α > 0,
α2

2(α− β)
− 2a > 0,

and

Ric ≥ 0, R ≥ 0, |Ric|2 ≤ R2.

Moreover,

(4β − 2α)Ric(∇u,∇u) ≤ (4β − 2α)|Ric||∇u|2 ≤ 4βR|∇u|2.
Hence (14) can be simplified as

∂H

∂τ
≤ ∆H − 2∇H · ∇u− (

2

τ
+ 2)H + 4β(R− 1

2τ
)|∇u|2

+
(
c+

α2

2(α− β)

) n
τ2

+ (2c+
α2

2(α− β)
)
n

τ
+ 2aR

+ 2a · R
τ

+
( α2

2(α− β)
− 2a+ 2aρ

)
R2 +

nα2

8(α− β)
.

Since 0 ≤ R < 1
2τ which is based on (b) in Lemma 2.3, we obtain

∂H

∂τ
≤ ∆H − 2∇H · ∇u− (

2

τ
+ 2)H + 2

(
c+

α2

4(α− β)
+

a

2n

)n
τ



HARNACK ESTIMATES FOR NONLINEAR BACKWARD HEAT EQUATIONS 325

+
(
c+

α2

2(α− β)
+

α2

8n(α− β)
+

a

2n
+
aρ

2n

) n
τ2

+
nα2

8(α− β)
.

Choosing c = −
(

α2

2(α−β) + α2

8n(α−β) + a
2n + aρ

2n

)
< 0, then

∂H

∂τ
≤ ∆H − 2∇H · ∇u− (

2

τ
+ 2)H +

nα2

8(α− β)
.

The following proof is exactly the same as (i). Therefore,

H − nα2

16(α− β)
≤ 0

for all (x, t) ∈Mn × [0, T ) with T < δ
2 . �

Remark 3.1. (i) From Lemma 2.2, we can see that Theorem 1.1 also hold if u
is replaced by v only by changing u into v in the conclusions.

(ii) We can derive classical Harnack inequalities by integrating the Harnack
estimate in Theorem 1.1 along a space-time path. Since the method is standard,
we omit it.

In the following, we consider the positive solution to the nonlinear backward
heat equation (6) without any potential when the metric evolved by the RB
flow on a closed manifold Mn. Assume 0 < f < 1. Note that this property is
preserved as time t evolves. In fact, let u = − ln f and ũ(x, τ) = u(x, T − τ) =
u(x, t), then

∂ũ

∂τ
= ∆ũ− |∇ũ|2 − ũ.

If the initial value 0 < f(x, 0) < 1, i.e., ũ(x, 0) > 0. Using the maximum
principle and the Grönwall inequality, one can show that

u(x, t) = ũ(x, τ) ≥ ũmin(τ) ≥ e−τ ũmin(0) > 0,

that is,

0 < f(x, t) < 1

for all (x, t) ∈Mn × [0, T ].

Proof of Theorem 1.3. In the proof of Lemma 2.1, let us take α = 0, β =
−1, a = 0, b = −1, c = 0 and γ = 0, then

H = |∇u|2 − u

τ
.

Comparing with the equation (12), we have

∂H

∂τ
= ∆H−2∇H ·∇u−(

1

τ
+1)H−2|∇∇u|2−|∇u|2−4Ric(∇u,∇u)+2ρR|∇u|2.

The nonnegativity of the initial curvature operator implies Ric ≥ 0 and R ≥ 0.
Combining with the assumption of ρ ≤ 0, we obtain

∂H

∂τ
≤ ∆H − 2∇H · ∇u− (

1

τ
+ 1)H.
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Since
H = |∇u|2 − u

τ
< 0

holds for τ small enough. Applying the maximum principle yields

|∇u|2 − u

τ
=
|∇f |2

f2
− 1

τ
ln

1

f
≤ 0

for all (x, t) ∈Mn × [0, T ). �

Remark 3.2. Following the same arguments, we show that Theorem 1.3 also
holds if 1 ≤ f < A (A is a constant) only need to set u = ln A

f , i.e.,

(15)
|∇f |2

f2
≤ 1

τ
ln
A

f
.

By means of the inequality (15), we can derive the following corollary which
shows that any positive L1-solution of the equation (6) cannot blow up too
fast.

Corollary 3.3. Suppose that g(t)t∈[0,T ] evolve by the RB flow with ρ ≤ 0 on
an n-dimensional closed manifold Mn, and the initial curvature operator is
nonnegative. f(x, t) (≥ 1) be a L1-solution to the equation (6). Let τ = T − t,
then there exists a constant C depending on the geometry of g(t)t∈[0,T ] such
that

f(x, t) ≤ C

τ
n
2

for all (x, τ) ∈Mn × (0,min{1, T}].

Proof. Let f̃(x, τ) = f(x, T − τ) = f(x, t), then

∂f̃

∂τ
= ∆f̃ − f̃ ln f̃ .

Since the solution and the flow are well defined in Mn × [0, T ], there exists
(x0, τ0) ∈Mn × [0, T ], such that

max
Mn×[0,T ]

τ
n
2 f̃(x, τ) = τ

n
2
0 f̃(x0, τ0).

In particular,

max
Mn×[ τ02 ,τ0]

f̃(x, τ) ≤ τ
n
2
0

τ
n
2
f̃(x0, τ0) ≤ 2

n
2 f̃(x0, τ0).

Let A = 2
n
2 f̃(x0, τ0) > 1. Applying (15) to f̃(x, τ) in Mn × [ τ02 , τ0], then

(16) τ0
|∇f̃ |2

f̃2
(x, τ0) ≤ ln

A

f̃(x, τ0)
.

Let h(x, τ) = ln A
f̃(x,τ)

, (16) can be rewritten as∣∣∇√h(x, τ0)
∣∣ ≤ 1

2
√
τ0
.
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Let γ(s) : [0, 1] → Bτ0(x0,
√
τ0) be a minimal geodesic between γ(0) =

(x0, τ0) and γ(1) = (x, τ0) for any x ∈ Bτ0(x0,
√
τ0), where Bτ0(x0,

√
τ0) denot-

ing the ball of radius
√
τ0 measured by g(τ0) around the point x0. Integrating

along γ(s), then√
h(x, τ0)−

√
h(x0, τ0) =

∫ 1

0

d

ds

√
h(γ(s), τ0)ds

≤
∫ 1

0

∣∣∇√h(γ(s), τ0)
∣∣∣∣γ′(s)∣∣ds

≤ 1

2
√
τ0
·
√
τ0 =

1

2
.

Hence

sup
Bτ0 (x0,

√
τ0)

√
h(x, τ0) ≤

√
h(x0, τ0) +

1

2
=

√
n

2
ln 2 +

1

2
.

By the definitions of A and h(x, τ), we obtain

f̃(x, τ0) ≥ C1f̃(x0, τ0),

where C1 is a constant only depending on n.
Notice that there exists a constant C2 depending on the geometry of (Mn,

g(τ0)) such that (cf. [5])

Volg(τ0)
(
Bτ0(x0,

√
τ0)
)
≥ C2τ

n
2
0

as long as 0 < τ0 ≤ 1. Therefore,

C1C2τ
n
2
0 f̃(x0, τ0) ≤

∫
Bτ0 (x0,

√
τ0)

f̃(x, τ0)dµτ0(x) ≤
∫
Mn

f̃(x, τ0)dµτ0(x).

By the choice of (x0, τ0) and f ∈ L1, then

f(x, t) = f̃(x, τ) ≤ C

τ
n
2
.

�
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