• Title/Summary/Keyword: Nonlinear Diffusion Equation

Search Result 53, Processing Time 0.02 seconds

BIFURCATIONS IN A DISCRETE NONLINEAR DIFFUSION EQUATION

  • Kim, Yong-In
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.689-700
    • /
    • 1998
  • We consider an infinite dimensional dynamical system what is called Lattice Dynamical System given by a discrete nonlinear diffusion equation. By assuming the nonlinearity to be a general nonlinear function with mild restrictions, we show that as the diffusion parameter changes the stationery state of the given system undergoes bifurcations from the zero state to a bounded invariant set or a 3- or 4-periodic state in the global phase space of the given system according to the values of the coefficients of the linear part of the given nonlinearity.

  • PDF

FINITE DIFFERENCE SCHEMES FOR A GENERALIZED NONLINEAR CALCIUM DIFFUSION EQUATION

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1247-1256
    • /
    • 2009
  • Finite difference schemes are considered for a nonlinear $Ca^{2+}$ diffusion equations with stationary and mobile buffers. The scheme inherits mass conservation as for the classical solution. Stability and $L^{\infty}$ error estimates of approximate solutions for the corresponding schemes are obtained. using the extended Lax-Richtmyer equivalence theorem.

  • PDF

PROPERTIES OF POSITIVE SOLUTIONS FOR A NONLOCAL REACTION-DIFFUSION EQUATION WITH NONLOCAL NONLINEAR BOUNDARY CONDITION

  • Mu, Chunlai;Liu, Dengming;Zhou, Shouming
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1317-1328
    • /
    • 2010
  • In this paper, we study the properties of positive solutions for the reaction-diffusion equation $u_t$ = $\Delta_u+{\int}_\Omega u^pdx-ku^q$ in $\Omega\times(0,T)$ with nonlocal nonlinear boundary condition u (x, t) = ${\int}_{\Omega}f(x,y)u^l(y,t)dy$ $\partial\Omega\times(0,T)$ and nonnegative initial data $u_0$ (x), where p, q, k, l > 0. Some conditions for the existence and nonexistence of global positive solutions are given.

AN APPROXIMATE ANALYTICAL SOLUTION OF A NONLINEAR HYDRO-THERMO COUPLED DIFFUSION EQUATION

  • Lee, Jeong-woo;Cho, Won-cheol
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.187-196
    • /
    • 2001
  • An approximate analytical solution of a nonlinear hydro-thermo coupled diffusion equation is derived using the dimensionless form of the equation and transformation method. To derive an analytical solution, it is drastically assumed that the product of first order derivatives in the non-dimensionalized governing equation has little influence on the solution of heat and moisture behavior problem. The validity of this drastic assumption is demonstrated. Some numerical simulation is performed to investigate the applicability of a derived approximate analytical solution. The results show a good agreement between analytical and numerical solutions. The proposed solution may provide a useful tool in the verification process of the numerical models. Also, the solution can be used for the analysis of one-dimensional coupled heat and moisture movements in unsaturated porous media.

  • PDF

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION

  • Lee, Hyun Geun;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.

PERELMAN TYPE ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES FOR WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS UNDER CURVATURE DIMENSION CONDITION

  • Wang, Yu-Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1539-1561
    • /
    • 2021
  • We prove Perelman type 𝒲-entropy formulae and differential Harnack estimates for positive solutions to weighed doubly nonlinear diffusion equation on weighted Riemannian manifolds with CD(-K, m) condition for some K ≥ 0 and m ≥ n, which are also new for the non-weighted case. As applications, we derive some Harnack inequalities.

NUMERICAL SIMULATION OF THE RIESZ FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM

  • Zhang, H.;Liu, F.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.1-14
    • /
    • 2008
  • In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and $Gr\ddot{u}nwald$-Letnikov(G-L) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.

  • PDF

FINITE DIFFERENCE SCHEMES FOR A GENERALIZED CALCIUM DIFFUSION EQUATION

  • Choo, Sang-Mok;Lee, Nam-Yong
    • East Asian mathematical journal
    • /
    • v.24 no.4
    • /
    • pp.407-414
    • /
    • 2008
  • Finite difference schemes are considered for a $Ca^{2+}$ diffusion equations with damping and convection terms, which describe $Ca^{2+}$ buffering by using stationary and mobile buffers. Stability and $L^{\infty}$ error estimates of approximate solutions for the corresponding schemes are obtained using the extended Lax-Richtmyer equivalence theorem.

  • PDF

A Theoretical Investigation of Nonlinear Chemical Reactions Near the Critical Point in the Presence of Diffusion

  • Shin, Seok-Min;Shin, Kook-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.283-288
    • /
    • 1986
  • A nonlinear analysis is presented for the treatment of fluctuations near the critical point in the presence of diffusion in the Schlogl models. The two time scaling method is used to obtain an evolution equation for the amplitude of fluctuations. It is shown that the fluctuations decay to zero in the stable region and they are enhanced to a finite value as time goes to infinity in the unstable region.

MONOTONE METHOD FOR NONLINEAR HILFER FRACTIONAL REACTION-DIFFUSION EQUATIONS

  • Pandurang D. Kundgar;Jagdish A. Nanware;Gunvant A. Birajdar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.753-767
    • /
    • 2024
  • In this paper, we developed the existence and uniqueness results by monotone method for non-linear fractional reaction-diffusion equation together with initial and boundary conditions. In this text the Hilfer fractional derivative is used to denote the time fractional derivative. The employment of monotone method generates two sequences of minimal and maximal solutions which converges to lower and upper solutions respectively.