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PROPERTIES OF POSITIVE SOLUTIONS FOR A
NONLOCAL REACTION-DIFFUSION EQUATION WITH

NONLOCAL NONLINEAR BOUNDARY CONDITION

Chunlai Mu, Dengming Liu, and Shouming Zhou

Abstract. In this paper, we study the properties of positive solutions for
the reaction-diffusion equation ut = ∆u+

R
Ω updx−kuq in Ω×(0, T ) with

nonlocal nonlinear boundary condition u (x, t) =
R
Ω f (x, y) ul (y, t)dy on

∂Ω×(0, T ) and nonnegative initial data u0 (x), where p, q, k, l > 0. Some
conditions for the existence and nonexistence of global positive solutions
are given.

1. Introduction

In this paper, we deal with the existence and nonexistence of positive global
solutions for the following nonlocal equation with nonlocal nonlinear boundary
condition 




ut = ∆u+
∫
Ω
updx− kuq, x ∈ Ω, t > 0,

u (x, t) =
∫
Ω
f (x, y)ul (y, t)dy, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,
(1.1)

where Ω is a bounded domain in RN for N ≥ 1 with a smooth boundary ∂Ω,
p, q and l are positive parameters, the weight function f (x, y) is nonnegative,
continuous and defined for x ∈ ∂Ω, y ∈ Ω, while the initial data u0 (x) ∈ L2 (Ω)
is a nonnegative function and satisfies the compatibility condition u0 (x) =∫
Ω
f (x, y)ul

0 (y) dy for x ∈ ∂Ω.
Many physical phenomena were formulated into nonlocal mathematical mod-

els and studied by many authors (see [2, 3, 16, 20]). In the last few years, a lot
of works have been devoted to the study of properties of solutions to parabolic
problems involving nonlocal terms. Especially, Wang and Wang [17] considered
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the following reaction-diffusion equation

(1.2) ut = d∆u+
∫

Ω

updx− kuq

with homogeneous Dirichlet boundary condition and positive initial data. They
concluded that the blow-up occurs for large initial data if p > q ≥ 1, and that
all solutions exist globally if 1 ≤ p < q. In case of p = q, the issue depends on
the comparison between |Ω| and k.

In [15], Soufi et al. studied the heat equation of the form




ut = ∆u+ |u|p − 1
|Ω|

∫
Ω
|u|p dx, x ∈ Ω, t > 0,

∂u
∂n = 0, x ∈ ∂Ω, t > 0,
u (x, 0) = u0 (x) ,

∫
Ω
u0 (x) dx = 0, x ∈ Ω,

(1.3)

where 1 < p ≤ 2. Using energy method and Gamma-convergence technique,
they concluded that all solutions blow up in a finite time if the energy of u0 is
nonpositive. Recently, Jazar and Kiwan [10] generalized the above result, they
showed that the solution of (1.3) blow up in a finite time for all p > 1 while
the initial energy is nonpositive.

On the other hand, parabolic equations with nonlocal boundary conditions
are also encountered in other physical applications. For instance, in the study
of the heat conduction within linear thermoelastcity, Day [4, 5] investigated a
heat equation subject to the following boundary conditions

u (−L, t) =
∫ L

−L

f1 (x)u (x, t) dx, u (L, t) =
∫ L

−L

f2 (x)u (x, t) dx.

Friedman [8] generalized Day’s result to a general parabolic equation

(1.4) ut = ∆u+ g (x, u) , x ∈ Ω, t > 0,

which is subjected to the following nonlocal boundary condition

(1.5) u (x, t) =
∫

Ω

f (x, y)u (y, t) dy.

He established the global existence of solution and discussed its monotonic
decay property, and then proved that maxΩ |u (x, t)| ≤ ke−ξt under some hy-
potheses on f (x, y) and g (x, u).

In addition, parabolic equations with both nonlocal source and nonlocal
boundary condition have been studied as well. Such as, Lin and Liu [12] con-
sidered the problem of the form

(1.6) ut = ∆u+
∫

Ω

g (u) dx,

which is subjected to boundary condition (1.5) . They established local exis-
tence, global existence and nonexistence of solutions and discussed the blow-up
properties of solutions. Furthermore, they derived the uniform blow-up esti-
mate for some special g (u).
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In particular, Wang et al. [19] studied problem (1.2) with nonlocal boundary
condition (1.5) . They obtained the conditions for existence and nonexistence of
global solution. Moreover, they established the precise estimate of the blow-up
rate under some suitable hypotheses.

However, reaction-diffusion equations coupled with nonlocal nonlinear boun-
dary condition, such as u (x, t) =

∫
Ω
f (x, y)ul(y, t) dy, to our knowledge, has

not been well studied. Very recently, Gladkov and Kim [9] considered the
following semilinear heat equation





ut = ∆u+ c (x, t)up, x ∈ Ω, t > 0,
u (x, t) =

∫
Ω
f (x, y, t)ul (y, t) dy, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,
(1.7)

where p, l > 0. They obtained some criteria for the existence of global solution
as well as for the solution to blow up in a finite time.

For other works on nonlocal problems, we refer readers to [13, 14, 18] and
references therein.

Motivated by those of above works, we will get blow-up criteria for prob-
lem (1.1) with nonlocal nonlinear boundary, which are not only different from
situations with the null Dirichlet boundary condition, but also different from
situations with boundary condition (1.5). We will show that the weight func-
tion f (x, y) and the nonlinear term ul (y, t) in the boundary condition of (1.1)
play substantial roles in determining blow-up or not of solution.

In order to state our results, we introduce some useful symbols. Throughout
this paper, we let λ and ϕ (x) be the first eigenvalue and the corresponding
normalized eigenfunction of the problem

(1.8) −∆ϕ (x) = λϕ, x ∈ Ω; ϕ (x) = 0, x ∈ ∂Ω,

then

λ > 0, ϕ (x) > 0 and
∫

Ω

ϕ (x)dx = 1.

For convenience, we denote

L = sup
Ω

ϕ (x) , M1 = inf
∂Ω×Ω

f (x, y) , M2 = sup
∂Ω×Ω

f (x, y) .

The main results of this paper are stated as follows.

Theorem 1.1. Assume that p < q and l ≤ 1. Then, the problem (1.1) has
global solutions for any f (x, y) and any nonnegative initial data.

Theorem 1.2. Assume that max {p, l} > q ≥ 1 and min{λM1
L , 1

L} > k. Then
for any f (x, y) > 0, the solution of problem (1.1) blows up in a finite time if
the initial data u0 (x) satisfies

∫
Ω
u0 (x)ϕ (x) dx > 1.

Remark 1.3. In the special case of k = 0 in (1.1) , our results are still true and
consistent with those in [9].
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Theorem 1.4. Assume that p = q > 1. Then the problem (1.1) has blow-up
solutions in a finite time as well as global solutions. More precisely,

(i) if u0 (x) is large enough, then for any f (x, y) ≥ 0, the solution blows up
in a finite time.

(ii) if l ≥ 1 and
∫
Ω
f (x, y)dy < 1, the solution exists globally when u0 (x) ≤

ρψ (x) for some ρ > 0, where ψ (x) is defined in (5.2).

Remark 1.5. If p = 1 or p = q = 1, l > 1 and
∫
Ω
f (x, y)dy < 1, then there

exist positive solutions of (1.1) with sufficiently small initial data, which are
globally bounded.

Remark 1.6. If q = 1 or p = q = 1, l > 1, then the solution of problem (1.1)
blows up in a finite time for any f (x, y) > 0 provided that

∫

Ω

u0 (x)ϕ (x) dx >
(

λM1

(λ+ k)L

)− 1
l−1

.

Remark 1.7. If p = q = l = 1, |Ω| > k and
∫
Ω
f (x, y)dy < 1, it is obvious that

the problem has no blow-up solution.

In fact, it is easy to verify that v (t) = αeβt is a supersolution of (1.1) if
α ≥ maxx∈Ω u0 (x) and β ≥ |Ω| − k.

Remark 1.8. When l = 1 in (1.1) , then our results agree with those in [19].

The rest of this paper is organized as follows. In Section 2, we establish
the comparison principle for problem (1.1). In Sections 3 and 4, we will give
the proofs of Theorems 1.1 and 1.2, respectively. Finally, Theorem 1.4 will be
proved in Section 5.

2. Comparison principle and local existence

Let ΩT = Ω × (0, T ), ST = ∂Ω × (0, T ) and ΩT = Ω × [0, T ). We begin
with the precise definition of a weak solution of problem (1.1) and comparison
principle, which will be used in the sequel.

Definition 2.1. A function u ∈L2
(
0, T ;H1 (Ω)

)
, with u′ ∈ L2

(
0, T ;H−1 (Ω)

)
,

is a weak solution of the problem (1.1) if and only if u (x, t)|t=0 = u0 (x) for
all x ∈ Ω, and the equality

∫∫

ΩT

utφdxdt+
∫∫

ΩT

∇u · ∇φdxdt+
∫∫

ST

uφdSdt

=
∫∫

ΩT

φ

(∫

Ω

updx− kuq

)
dxdt+

∫∫

ST

φ

[∫

Ω

f (x, y)ul (y, t) dy
]
dSdt

holds for all test function φ ∈ L2
(
0, T ;H1 (Ω)

)
.

In a natural way the notion of a subsolution for (1.1) is given by:
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Definition 2.2. A function u ∈L2
(
0, T ;H1 (Ω)

)
, with u′ ∈L2

(
0, T ;H−1 (Ω)

)
,

is a weak subsolution of the problem (1.1) if and only if u (x, t)|t=0 ≤ u0 (x)
for all x ∈ Ω, and the inequality

∫∫

ΩT

utφdxdt+
∫∫

ΩT

∇u · ∇φdxdt+
∫∫

ST

uφdSdt

≤
∫∫

ΩT

φ

(∫

Ω

updx− kuq

)
dxdt+

∫∫

ST

φ

[∫

Ω

f (x, y)ul (y, t) dy
]
dSdt

holds for all test function 0 ≤ φ ∈ L2
(
0, T ;H1 (Ω)

)
.

Similarly, a function u (x, t) is a supersolution of (1.1) if the reversed in-
equalities hold in Definition (2.2) . A weak solution of (1.1) is a function which
is both a subsolution and a supersolution of (1.1). The following comparison
principle plays a crucial role in our later proof.

Proposition 2.3 (Comparison principle). Let u and u be a positive subsolution
and supersolution, respectively, with u (x, 0) ≤ u (x, 0) for x ∈ Ω. Then, u ≤ u
in ΩT .

Proof. We will modify the method in [1] to prove our result.
Step 1. First assume that p, q, l ≥ 1. Let us denote

M̂ = max
{
‖u‖L∞(ΩT ) , ‖u‖L∞(ΩT )

}
.

Then we have

(2.1) ‖uq − uq‖L2(ΩT ) ≤ qM̂q−1 ‖u− u‖L2(ΩT ) ,

and similarly, we have

(2.2)
∥∥∥∥
∫

Ω

(up − up) dx
∥∥∥∥

L2(ΩT )

≤ p |Ω| M̂p−1 ‖u− u‖L2(ΩT ) .

Consequently

(2.3)

∥∥∥∥
∫

Ω

(up− up) dx−k (uq − uq)
∥∥∥∥

L2(ΩT )

≤
(
p |Ω| M̂p−1+qkM̂q−1

)
‖u− u‖L2(ΩT ) ,

where |Ω| denotes the Lebesgue measure of Ω.
Let ω (x, t) = u (x, t)− u (x, t) and ω+ = max {ω, 0}. Then

ω+ ∈ L2
(
0, T ;H1 (Ω)

)
,
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and since ω (x, 0) ≤ 0, it follows that ω+ (x, 0) = 0. Subtracting the defined
inequalities for u and u from each other we get

(2.4)

∫∫

ΩT

ωtφdxdt+
∫∫

ΩT

∇ω · ∇φdxdt+
∫∫

ST

ωφdSdt

≤
∫∫

ΩT

φ

[∫

Ω

(up − up) dx− k (uq − uq)
]
dxdt

+
∫∫

ST

φ

[∫

Ω

f (x, y)
(
ul (y, t)− ul (y, t)

)
dy

]
dSdt

for all 0 ≤ φ ∈ L2
(
0, T ;H1 (Ω)

)
. Thus inequality (2.4) remains true for any

subcylinder of the form Ωτ = Ω×(0, τ) ⊂ ΩT and corresponding lateral bound-
ary Sτ = ∂Ω× (0, τ) ⊂ ST . Taking a special test function φ = ω+ in (2.4) and
applying (2.3) to (2.4) , we find that

1
2

∥∥ω+ (x, τ)
∥∥2

L2(Ω)
+

∥∥∇ω+
∥∥2

L2(Ωτ )
+

∥∥ω+
∥∥2

L2(Sτ )

≤
(
p |Ω| M̂p−1 + qkM̂q−1

) ∥∥ω+
∥∥2

L2(Ωτ )

+
∫∫

Sτ

ω+

[∫

Ω

f (x, y)
(
ul (y, t)− ul (y, t)

)
dy

]
dSdt.

(2.5)

Next, our task is to estimate the second term on the right-side of (2.5) . Indeed,
we first have ∫

Ω

f (x, y)
(
ul (y, t)− ul (y, t)

)
dy

=
∫

Ω1

f (x, y)
(
ul (y, t)− ul (y, t)

)
dy

+
∫

Ω2

f (x, y)
(
ul (y, t)− ul (y, t)

)
dy

≤ lM2M̂
l−1

∫

Ω

ω+ (y, t)dy

≤ lM2 |Ω|
1
2 M̂ l−1

∥∥ω+ (x, t)
∥∥

L2(Ω)
,

(2.6)

where Ω1 = {y ∈ Ω : u (y, t) < u (y, t)} , Ω2 = {y ∈ Ω : u (y, t) ≥ u (y, t)} . Then
by virtue of Young’s inequality, we deduce∫∫

ST

ω+

[∫

Ω

f (x, y)
(
ul (y, t)− ul (y, t)

)
dy

]
dSdt

≤ lM2 |Ω|
1
2 M̂ l−1

∫∫

Sτ

∥∥ω+ (x, t)
∥∥

L2(Ω)
ω+dSdt

≤ lM2 |Ω|
1
2 M̂ l−1

∫∫

Sτ

(
C (ε)

∥∥ω+ (x, t)
∥∥2

L2(Ω)
+ ε

(
ω+

)2
)
dSdt

≤ lM2 |Ω|
1
2 M̂ l−1

(
C (ε) |∂Ω|

∥∥ω+
∥∥2

L2(Ωτ )
+ ε

∥∥ω+
∥∥2

L2(Sτ )

)

(2.7)
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for any ε > 0, where C (ε) denotes some positive constant depending only on
ε. Moreover, we see from the trace theorem that

(2.8)
∥∥ω+

∥∥2

L2(Sτ )
≤ κ

(∥∥∇ω+
∥∥2

L2(Ωτ )
+

∥∥ω+
∥∥2

L2(Ωτ )

)
,

where κ is a positive constant. Now, let us choose ε sufficiently small such that

lM2 |Ω|
1
2 M̂p−1κε < 1.

From (2.5)-(2.8) , it follows that

(2.9)
∥∥ω+ (x, τ)

∥∥2

L2(Ω)
≤ C

∥∥ω+
∥∥2

L2(Ωτ )
,

where C is some positive constant. Now, we write

(2.10) y (τ) =
∥∥ω+ (x, τ)

∥∥2

L2(Ω)
,

then, (2.9) implies that

(2.11) y (τ) ≤ C

∫ τ

0

y (t)dt for a.e. 0 ≤ τ ≤ T.

By Gronwall’s inequality, we know that y (τ) = 0 for any τ ∈ [0, T ] . Thus,
ω+ = 0, this means that u ≤ u in ΩT as desired.

Step 2. Consider now the case that p, q, l < 1, since u and u are positive,
there exists a constant µ > 0 such that u ≥ µ > 0, u ≥ µ > 0. Therefore, we
have the following estimate

(2.12)

∥∥∥∥
∫

Ω

(up − up) dx− k (uq − uq)
∥∥∥∥

L2(Ω)

≤ (
p |Ω|µp−1 + qkµq−1

) ‖u− u‖L2(Ω) ,

and

(2.13)
∫

Ω

f (x, y)
(
ul (y, t)− ul (y, t)

)
dy ≤ lM2 |Ω|

1
2 µl−1

∥∥ω+ (x, t)
∥∥

L2(Ω)
.

Then, the left arguments are the same as those for the case p, q, l ≥ 1, so we
omit them.

Step 3. If p < 1, or q < 1, or l < 1. According to Steps 1 and 2, we can
obtain our conclusion easily. The proof of Proposition 2.3 is complete. ¤

Remark 2.4. In [11], if u and u are a subsolution and supersolution for the
corresponding problem, respectively. When

∫
Ω
lf (x, y)χl−1 (y, t) dy ≤ 1 or

f (x, y)χl−1 (y, t) ≤ C, where C denotes some positive constant and χ is an
intermediate value between u and u, then u (x, 0) ≤ u (x, 0) implies u ≤ u in
ΩT . From Proposition 2.3, we know that u (x, 0) ≤ u (x, 0) implies u ≤ u in ΩT

and we have no restriction on f (x, y)χl−1 (y, t) here.
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Local in time existence of classical solutions of the problem (1.1) could be
obtained by using Schauder’s fixed point theorem, the representation formula
and the contraction mapping principle as in [7]. The proof is more or less
standard, so is omitted here. From comparison principle, we know that the
classical solution is positive when u0 (x) is positive. We assume that u0 (x) > 0
in the rest of this paper.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Remember that λ and ϕ are the first eigenvalue and
the corresponding normalized eigenfunction of −∆ with homogeneous Dirichlet
boundary condition. We choose δ to satisfy that for some 0 < ε < 1,

(3.1) M2

∫

Ω

1
δϕ (y) + ε

dy ≤ 1.

Let

(3.2) v (x, t) =
ceγt

δϕ (x) + ε
,

where

c = max

{
sup
Ω

(u0 (x) + 1) (δϕ+ ε) , sup
Ω

[
(δϕ+ ε)q

k

∫

Ω

1
(δϕ+ ε)p dx

] 1
q−p

}
,

γ ≥ λ+ sup
Ω

2δ2 |∇ϕ|2
(δϕ+ ε)2

.

A simple computation shows

(3.3)

vt −∆v −
∫

Ω

vpdx+ kvq

= γv − v

(
λδϕ

δϕ+ ε
+

2δ2 |∇ϕ|2
(δϕ+ ε)2

)
−

∫

Ω

cpepγt

(δϕ+ ε)p dx+
kcqeqγt

(δϕ+ ε)q ≥ 0,

v (x, 0) =
1

δϕ+ ε
≥

sup
Ω

(u0 (x) + 1) (δϕ (x) + ε)

δϕ+ ε
> u0 (x) .(3.4)

On the other hand, noticing that v (x, t) > 1 and l < 1, we have on the
boundary that

v (x, t) =
ceγt

ε
> ceγt ≥

∫

Ω

f (x, y)
ceγt

δϕ (y) + ε
dy =

∫

Ω

f (x, y) v (y, t) dy

≥
∫

Ω

f (x, y) vl (y, t) dy.(3.5)

Combining now (3.3)-(3.5), we see that v (x, t) is a supersolution of (1.1) and
u (x, t) < v (x, t) by comparison principle, then the problem (1.1) has global
solutions. The proof of Theorem 1.1 is complete. ¤
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4. Proof of Theorem 1.2

Proof of Theorem 1.2. The proof is a variant of the eigenfunction method like
the one used in [9]. Let u (x, t) be the solution to (1.1). We define the following
auxiliary function

(4.1) J (t) =
∫

Ω

ϕ (x)u (x, t) dx.

Taking the derivative of J (t) with respect to t, we could obtain

J ′ (t)=
∫

Ω

ϕ

(
∆u+

∫

Ω

updx− kuq

)
dx

=
∫

∂Ω

∂u

∂ν
ϕdS −

∫

Ω

∇ϕ · ∇udx+
∫

Ω

updx−k
∫

Ω

ϕuqdx

=
∫

Ω

u∆ϕdx−
∫

∂Ω

∂ϕ

∂ν
udS +

∫

Ω

updx−k
∫

Ω

ϕuqdx

=−λ
∫

Ω

uϕdx−
∫

∂Ω

∂ϕ

∂ν

(∫

Ω

f (x, y)ul (y, t) dy
)
dS+

∫

Ω

updx−k
∫

Ω

ϕuqdx.

Applying the equality
∫

∂Ω
∂ϕ
∂ν dS = −λ ∫

Ω
ϕdx = −λ, we get

(4.2) J ′ (t) ≥
∫

Ω

(
−λu+

1
L
up +

λM1

L
ul − kuq

)
ϕdx.

Let us first assume that max {l, p} = l. From (4.2) and Jensen’s inequality,
it follows that

(4.3) J ′ (t) ≥ −λJ +
λM1

L
J l − kJq ≥ −λJ +

(
λM1

L
− k

)
J l − k.

Next, we look for solution J (t) to (4.3) with J (0) > 1 on its interval of exis-
tence. Since λM1

L − k > 0 and the function f (J) = J l is convex, there exists
η > 1 such that (

λM1

L
− k

)
J l ≥ 2 (λJ + k) , ∀J ≥ η.

It follows easily that if J (0) > η, then J (t) is increasing on its interval of
existence and

(4.4) J ′ (t) ≥ 1
2
J l.

From the above inequality it follows that

(4.5) lim
t→T−0

J (t) = +∞,

where
T0 =

2
(l − 1)J l−1 (0)

.

Then by assumptions in Theorem 1.2, the solution u (x, t) becomes infinite in
a finite time.



1326 CHUNLAI MU, DENGMING LIU, AND SHOUMING ZHOU

We next consider the case p > q ≥ 1. Owing to (4.2) and Jensen’s inequality,
we get

(4.6) J ′ (t) ≥ −λJ +
(

1
L
− k

)
J l − k.

Then, since the remainder of the proof is similar to the proof in the case of
l > q ≥ 1, we omit here. This completes the proof. ¤

5. Proof of Theorem 1.4

Proof of Theorem 1.4. Firstly, in order to prove our blow-up result, we consider
the following well-known nonlocal reaction-diffusion equation

(5.1) ut = ∆u+
∫

Ω

updx− kuq

coupled with zero boundary condition and initial data u0 (x). Let v (x, t) be
the solution of this equation. It is obvious that v (x, t) is a subsolution of the
problem (1.1). It is known to all that v (x, t) blows up in a finite time if u0 (x) is
large enough (see [17, Theorem 3.3]), by Proposition 2.3, we obtain our blow-up
result immediately.

Now, we show there exists global solutions if l > 1 and
∫
Ω
f (x, y)dy < 1.

Let ψ (x) be the unique positive solution of the linear elliptic problem

(5.2) −∆ψ(x) = σ > 0, x ∈ Ω; ψ(x) =
∫

Ω

f (x, y)dy, x ∈ ∂Ω,

where σ is chosen such that 0 < ψ (x) < 1 (since
∫
Ω
f (x, y)dy < 1, there exists

such a positive constant σ).
Let

v (x) = ρψ (x) ,
where

0 < ρ ≤ min

{
1,

(
σ∫

Ω
ψp (x) dx− kψp (x)

) 1
p−1

}
.

Calculating directly, we find that

(5.3)
vt −∆v = −∆v = σρ > ρp

(∫

Ω

ψp (x) dx− kψp (x)
)

=
∫

Ω

vp (x) dx− kvp (x).

For x ∈ ∂Ω, we have that

(5.4) v (x) = ρ

∫

Ω

f (x, y) dy >
∫

Ω

ρψ (y) f (x, y) dy ≥
∫

Ω

vl (y) f (x, y) dy,

where the conditions v (x) < 1 and l ≥ 1 are used.
By Proposition 2.3, it follows that u (x, t) exists globally provided that

u0 (x) < ρψ (x). The proof of Theorem 1.4 is complete. ¤
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