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Abstract. In this paper, we developed the existence and uniqueness results by monotone

method for non-linear fractional reaction-diffusion equation together with initial and bound-

ary conditions. In this text the Hilfer fractional derivative is used to denote the time frac-

tional derivative. The employment of monotone method generates two sequences of minimal

and maximal solutions which converges to lower and upper solutions respectively.

1. Introduction

In recent times, there has been a significant rise in the study of fractional
calculus in mathematics, as well as in other areas of science and engineer-
ing. Researchers have been focusing on studying various fractional differential
operators with different characteristics, such as generalization and qualitative
properties. Some of these operators include Riemann-Liouville (R-L), Caputo,
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Hadamard, Hilfer, ψ-Caputo, ψ-Hilfer, and more. Among these, the Hilfer
fractional differential operator has been found to be useful in many physical
situations, which has attracted researchers to work on it.

Over the last decade, several authors have made significant progress in this
field, as described in articles like [1, 2, 4, 5, 10, 11, 15, 23]. These articles
provide preliminary properties and basic results in this area. Researchers have
also studied initial boundary value problems (IBVP) for fractional diffusion,
and monotone iterative techniques have proven to be useful in dealing with
such problems.

For instance, Furati et al. [9] considered an initial value problem for a class
of Hilfer fractional differential equations. The monotone method combining
lower and upper solutions for R-L IBVP for reaction-diffusion equations is
exhibited in literature [7, 22, 28, 29]. The developments of such problems
using the monotone method have been extensively studied in [8, 17, 16, 18,
19, 20, 21, 26]. However, more literature is needed on IBVP for nonlinear
Hilfer fractional diffusion equations by the monotone method.

This has motivated us to develop a monotone method with lower and upper
solutions. Two monotone convergent sequences are constructed, which con-
verge to the minimal and maximal solutions to the problem. The application
of the method existence and uniqueness of the IBVP discussed in detail.

Consider the nonlinear Hilfer fractional reaction-diffusion equations with
initial and boundary conditions

∂α,βt u− kuxx = f(x, t, u) on QT , (1.1)

u(0, t) = A(t), u(L, t) = B(t) in ΓT , (boundary conditions), (1.2)

Γ(α)t1−αu(x, t) |t=0= f0(x) x ∈ Ω, (initial condition) , (1.3)

where f ∈ C[[0, L]× [0, T ]× R,R], Ω = [0, L], J = (0, T ], QT = J × Ω, k > 0
and ΓT = (0, T )×∂Ω. The equation (1.1)- together with initial and boundary
conditions (1.2)-(1.3) is called IBVP for nonlinear fractional reaction diffusion

equation. Here ∂α,βt is partial Hilfer fractional derivative with respect to time
t of order 0 ≤ α ≤ 1 and 0 < β < 1.

The paper is organized as follows: Section 2 provides the basic definitions,
while Section 3 presents the comparison results. In section 4, we discuss the
monotone method and the existence and uniqueness of the solution of IBVP
(1.1)-(1.3). Finally, the paper concludes with a summary.

2. Preliminaries

In this section, we will review some definitions and results that will be
helpful in developing our main findings.
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Definition 2.1. ([25]) The Riemann-Liouville fractional integral of order α
of a function u(t) is defined as

Iα0+u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds, 0 < α ≤ 1.

Definition 2.2. ([25]) The Riemann-Liouville fractional derivative of order α
for a function u(t) is defined as

Dα
0+u(t) =

1

Γ(n− α)

dn

dtn

∫ t

0
(t− s)α−1u(s)ds, t > 0, n− 1 < α < n.

Definition 2.3. ([25]) The Caputo fractional derivative of order α for a func-
tion u(t) is defined as

cDα
0+u(t) = Dα

0+

[
u(t)−

n−1∑
k=0

tk

k!
uk(0)

]
, t > 0, n− 1 < α < n,

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.4. ([11]) (Hilfer fractional derivative) The generalized Riemann-
Liouville fractional derivative of order 0 ≤ α ≤ 1 and 0 < β < 1 with lower
limit a is defined as

Dα,β
a+ u(t) = I

α(1−β)
a+

d

dt
I
(1−α)(1−β)
a+ u(t)

for functions such that the expression on the right-hand side exists.

Definition 2.5. ([25]) The two parameter Mittag-Leffler function is defined
as

Eα,r(λt
α) =

∞∑
k=0

(λtα)k

Γ(αk + r)
.

Definition 2.6. ([11]) A function φ(t) ∈ C(J,R) is a Cp continuous function,
if t1−αφ(t) ∈ C(J0,R), where p = 1 − α, J = (0, T ], J0 = [0, T ]. The set
of Cp continuous functions is denoted by Cp(J,R). Further, given a function
φ(t) ∈ Cp(J,R), we call the function t1−αφ(t), the continuous extension of φ(t).

Remark 2.7. Note that any continuous function in J0 is also a Cp continuous
function.

Lemma 2.8. ([8]) (Comparison Result) Let η ∈ Cp[J0,R] be such that for
some t1 ∈ (0, T ], η(t1) = 0, and t1−αη(t) ≤ 0 on [0, t1]. Then Dαη(t1) ≥ 0.
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3. Auxiliary results

In this section, we obtain a comparison results for the nonlinear Hilfer frac-
tional reaction-diffusion equations with initial and boundary conditions (1.1)-
(1.3). The comparison theorem is with respect to the lower and upper solutions
when the nonlinear term is of the form f(x, t, u), where f(x, t, u) satisfies one
sided Lipschitz condition. In this case, we assume the nonlinear function in
u(x, t) for (x, t) in [0, L]× [0, T ].

Consider the non-linear Hilfer fractional diffusion equations

∂α,βt u− kuxx = f(x, t, u) on QT , (3.1)

u(0, t) = A(t), u(L, t) = B(t) in ΓT , (3.2)

Γ(α)t1−αu(x, t) |t=0= f0(x) x ∈ Ω, (3.3)

where f ∈ C[[0, L]× [0, T ]× R,R], Ω = [0, L], J = (0, T ], QT = J × Ω, k > 0
and ΓT = (0, T )× ∂Ω.

For compatible conditions for IBVP (3.1)-(3.3), we assume that

f0(0) = A(0) = f0(L) = B(0) = 0, Γ(α)t1−αu(x, t) |t=0= f0(x).

In the throughout of this work, we assume that initial and boundary condi-
tion satisfy the compatibility conditions. Using the method of eigenfunction
expansion, the solution of (3.1) is of the form:

u(x, t) =

∞∑
n=0

bn(t)φn(x), (3.4)

where the eigenfunctions of the related homogeneous problem are known to
be φn(x) = sinnπxL and its corresponding eigenvalues are λn =

[
(nπL )2

]
. Using

the standard arguments, one can compute bn(t) as follows:

bn(t) = b0nt
α−1Eα,α(−kλntα) +

∫ t

0
(t− τ)α−1Eα,α(−kλntα)qn(τ)

+ k
2nπ

L2
[A(τ)− (−1)nB(τ)]dτ,

where

b0n =
2

L

∫ L

0
f0(y)φn(y)dy

and

qn(t) =
2

L

∫ L

0
f(x, t, u)φn(y)dy.
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Therefore,

bn(t) =
2

L

∫ L

0
f0(y)φn(y)dytα−1Eα,α(−kλntα)

+

∫ t

0
(t− τ)α−1Eα,α(−kλntα)

2

L

∫ L

0
f(y, t, u)φn(y)dydτ

+ k
2nπ

L2

∫ t

0
(t− τ)α−1Eα,α(−kλntα)[A(τ)− (−1)nB(τ)]dτ.

So, using bn(t) in above equation, the solution u(x, t), we have

u(x, t) =

∫ L

0
tα−1

[ ∞∑
n=1

2

L
Eα,α(−kλntα)φn(x)φn(y)

]
f0(y)dy

+

∫ t

0

∫ L

0

[ ∞∑
n=1

2

L
(t− τ)α−1Eα,α(−kλn(t− τ)α)φn(x)φn(y)

]
× f(y, t, u)dydτ

+ k

∫ t

0

[
2nπ

L2
(t− τ)α−1Eα,α(−kλn(t− τ)α)φn(x)

]
A(τ)dτ

− k
∫ t

0

[
2nπ

L2
(t− τ)α−1Eα,α(−kλn(t− τ)α)φn(x)

]
B(τ)dτ.

After, simplifying we get

u(x, t) =

∫ L

0
tα−1G(x, y, t)f0(y)dy +

∫ t

0

∫ L

0
G(x, y, t− τ)f(y, t, u)dydτ

+ k

∫ t

0
Gy(x, 0, t− τ)A(τ)dτ − k

∫ t

0
Gy(x, L, t− τ)B(τ)dτ,

where

G(x, y, t) =

∞∑
n=0

2

L
Eα,α(−kλntα)φn(x)φn(y).

This result is useful in our main result for computing the linear approxima-
tions of the monotone iterates. We recall lemmas regarding the Mittage-Leffler
function in the series form.

Lemma 3.1. ([6]) Let Eα,1(−λtα) be the Mittage-Leffler function of order α,

where 0 < α ≤ 1. Then,
Eα,1(−λ1tα)
Eα,1(−λ2tα) < 1, where λ1, λ2 > 0 such that λ1 = λ2+c

for c > 0.
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Lemma 3.2. ([6]) Let Eα,α(−λtα) be the Mittage-Leffler function of order

α, where 0 < α ≤ 1. Then,
Eα,α(−λ1tα)
Eα,α(−λ2tα) < 1, where λ1, λ2 > 0 such that

λ1 = λ2 + c for c > 0.

Now, we show the convergence of the above solutions using Lemma 3.1 and
Lemma 3.2 above. We can split the solution of (3.1) as u1(x, t), u2(x, t) and
u3(x, t) respectively as follows:

(a) u1(x, t) is the solution of (3.1), when f(x, t, u) = 0, A(t) = 0 = B(t),
(b) u2(x, t) is the solution of (3.1), when A(t) = 0 = B(t), f0 = 0,
(c) u3(x, t) is the solution of (3.1), when f(x, t, u) = 0, f0 = 0.

Theorem 3.3. ([6]) u1(x, t), u2(x, t) and u3(x, t) converge when |f0(x)| < N1,
N1 > 0, |f(x, t, u)| < N2, N2 > 0; |A(t)| < M1, M1 > 0 and |B(t)| < M2,
M1,M2 > 0, respectively.

Definition 3.4. ([6]) The functions v(x, t), w(x, t) ∈ C2,α[QT ,R] are called
the natural lower and upper solutions of (3.3) if

∂α,βt v − kvxx ≤ f(x, t, v) on QT , (3.5)

v(0, t) ≤ A(t), v(L, t) ≤ B(t) in ΓT ,

Γ(α)t1−αv(x, t) |t=0≤ f0(x) x ∈ Ω

and

∂α,βt w − kwxx ≥ f(x, t, w) on QT , (3.6)

w(0, t) ≥ A(t), w(L, t) ≥ B(t) in ΓT ,

Γ(α)t1−αw(x, t) |t=0≥ f0(x) x ∈ Ω.

The next result is a comparison result relative to lower and upper solutions
of (3.3).

Theorem 3.5. Assume that

(i) v(x, t), w(x, t) ∈ C2,α[QT ,R] are natural lower and upper solutions of
(3.3), respectively and

Γ(α)t1−αv(x, t) |t=0≤ Γ(α)t1−αw(x, t) |t=0,

v(0, t) ≤ w(0, t), v(L, t) ≤ w(L, t).

(ii) f(x, t, u) satisfies the one sided Lipschitz condition

f(x, t, u)− f(x, t, u∗) ≤M(u1 − u∗2),

whenever u ≤ u∗ and M > 0.

Then v(x, t) ≤ w(x, t) on J × Ω.
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Proof. The primary aim to prove the theorem is to first show that one of the
inequalities in (i) is strictly satisfied.

For this purpose, consider m(x, t) = v(x, t) − w(x, t). We claim that
m(x, t) < 0, (x, t) ∈ Ω × J . Suppose that the conclusion is not true. Then
there exists a t1 ∈ J and x1 ∈ Ω such that t1−αm(x1, t1) < 0 on [0, t1),
m(x1, t1) = 0. It easy to check mx(x1, t1) = 0 and mx,x(x1, t1) = 0. Then,

using Lemma 2.1, we get ∂α,βt m(x, t) ≥ 0
From the hypothesis, we also have

∂α,βt m(x1, t1) = ∂α,βt v(x1, t1)− ∂α,βt w(x1, t1)

< k
∂2v(x1, t1)

∂x2
+ f(x1, t1, v)− k∂

2w(x1, t1)

∂x2
− f(x1, t1, w)

< f(x1, t1, v)− f(x1, t1, w)

= 0,

which is a contradiction. Therefore, v(x, t) < w(x, t) on QT .
In order to prove the theorem for the non strict inequalities, let

w∗(x, t) = w(x, t) + εtα−1Eα,α[2Mtα],

v∗(x, t) = v(x, t)− εtα−1Eα,α[2Mtα].

From this, it follows

w∗(0, t) > v∗(0, t), w(L, t) > v(L, t),

Γ(α)t1−αw∗(x, t) |t=0 > Γ(α)t1−αw(x, t) |t=0> Γ(α)t1−αv(x, t) |t=0

> Γ(α)t1−αv∗(x, t) |t=0 .

Then

∂α,βt w(x, t)− k∂
2w∗(x, t)

∂x2
= ∂α,βt w(x, t)− k∂

2w(x, t)

∂x2
+ εtα−1Eα,α[2Mtα]

≥ f(x, t, w) + εtα−12MEα,α[2Mtα]

= f(x, t, w) +Mεtα−1Eα,α[2Mtα]

= f(x, t, w∗) + εMtα−1Eα,α[2Mtα]

> f(x, t, w∗) on QT .

Similarly,

∂α,βt v∗(x, t)− k∂
2v∗(x, t)

∂x2
> f(x, t, v∗) on QT .

By the strict inequality result, v∗ < w∗ on QT . Letting ε→ 0 we have v ≤ w
on QT . �
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The next result is the maximum principle for the Hilfer parabolic equation
in one dimensional space which will be useful in proving the uniqueness of the
solution.

Corollary 3.6. Let

∂α,βt m(x, t)− k∂
2m(x, t)

∂x2
≤ 0 on QT ,

m(0, t) ≤ 0,m(L, t) ≤ 0 on ΓT ,

Γ(α)t1−αm(x, t) |t=0≤ 0 on Ω.

Then m(x, t) ≤ 0 on QT .

Proof. Suppose m(x, t) has positive maximum at (x1, t1). Let m(x1, t1) = K.
Let m(x, t) = m(x, t)−K. Then t1−αm(x, t) ≤ 0 on (0, t1] and m(x1, t1) = 0.

Using Lemma 2.1, we get ∂α,βt m(x1, t1) ≥ 0. Also ∂α,βt m(x1, t1) ≤ 0. Combin-
ing these two, we get

∂α,βt m(x1, t1)− k
∂2m(x1, t1)

∂x2
≥ 0.

Also, we have

∂α,βt m(x, t)−K∂2m(x, t)

∂x2
= ∂α,βt m(x, t)−K∂2m(x, t)

∂x2
−K tα−1

Γ(α)

< ∂α,βt m(x, t)−K∂2m(x, t)

∂x2

< 0,

which gives a contradiction. Hence, m(x, t) ≤ 0. �

4. Main results

This section, to develop monotone method for Hilfer fractional reaction-
diffusion equation (3.3) using lower and upper solutions. Also obtained exis-
tence and uniqueness of solution of problem (3.3).

Theorem 4.1. (i) Let f(x, t, u) in C2,α[Ω× J × R,R] be nondecreasing.
(ii) Let (v0, w0) be the lower and upper solutions of (3.3) such that t1−αv0 ≤

t1−αw0 on QT .
(iii) Let f(x, t, u) satisfies the one sided Lipschitz condition

f(x, t, u)− f(x, t, u∗) ≥ −M(u− u∗),
whenever u∗ ≤ u and M > 0.

Then there exist monotone sequences
{
t1−αvn(x, t)

}
and

{
t1−αwn(x, t)

}
such

that t1−αvn(x, t) → t1−αρ(x, t) and t1−αwn(x, t) → t1−αγ(x, t) uniformly and
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monotonically on QT , where ρ(x, t) and γ(x, t) are minimal and maximal so-
lutions of (3.3) respectively.

Proof. We construct the sequences {vn(x, t)} and {wn(x, t)} as follows:

∂α,βt vn(x, t)− k∂
2vn(x, t)

∂x2
= f(x, t, vn−1(x, t))), on QT , (4.1)

Γ(α)(t)1−αvn(x, t) |t=0= f0(x), x ∈ Ω,

vn(0, t) = A(t), vn(L, t) = B(t) in ΓT

and

∂α,βt wn(x, t)− ki
∂2wn(x, t)

∂x2
= f(x, t, wn−1(x, t)) on QT , (4.2)

Γ(α)(t)1−αwn(x, t) |t=0= f0(x), x ∈ QT ,
wn(0, t) = A(t), wn(L, t) = B(t) in ΓT .

It is easy to observe that v1(x, t) and w1(x, t) exist and unique by the rep-
resentation form of linear equation and Corollary 3.6. By induction and the
assumptions on f(x, t, u), we prove that the solution vn(x, t) and wn(x, t) exist
and unique by Corollary 3.6, for any n. Let us prove first v0 ≤ v1 and w1 ≤ w0

on QT . Let ρ(x, t) = v0(x, t)− v1(x, t). Then

∂α,βt ρ(x, t)− k∂
2ρ(x, t)

∂x2
= ∂α,βt v0(x, t)− k

∂2v0(x, t)

∂x2

−
[
∂α,βt v1(x, t)− k

∂2v1(x, t)

∂x2

]
≤ f(x, t, v0)− [f(x, t, v0]

= 0,

where ρ(0, t) = 0, ρ(L, t) = 0 on Ω and Γ(α)t1−αρ(x, t) |t=0= 0 on ΓT . There-
fore, by Corollary 3.6, it follows that ρ(x, t) ≤ 0 on QT and t1−αv0(x, t) ≤
t1−αv1(x, t) on QT .

Assume that vk−1 ≤ vk. Now we show vk ≤ vk+1. Let ρ(x, t) = vk(x, t) −
vk+1(x, t). Then

∂α,βt ρ(x, t)− k∂
2ρ(x, t)

∂x2
= ∂α,βt vk(x, t)− k

∂2vk(x, t)

∂x2

−
[
∂α,βt vk+1

i (x, t)− k∂
2vk+1(x, t)

∂x2

]
≤ f(x, t, vk)− [f(x, t, vk+1)]

≤M(vk+1 − vk)
≤ −Mρ(x, t),
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where ρ(0, t) = 0, ρ(L, t) = 0 on Ω and Γ(α)t1−αρ(x, t) |t=0= 0 on ΓT . There-
fore, by Corollary 3.6, it follows that ρ(x, t) ≤ 0 on QT and t1−αvk(x, t) ≤
t1−αvk+1(x, t) on QT . Hence by mathematical induction, we have

t1−αv0 ≤ t1−αv1 ≤ ... ≤ t1−αvk ≤ t1−αvk+1 ≤ ... ≤ t1−αvn−1 ≤ t1−αvn. (4.3)

We show that w1(x, t) ≤ w0(x, t) on QT . Let ρ(x, t) = w1(x, t) − w0(x, t).
Then

∂α,βt ρ(x, t)− ki
∂2ρ(x, t)

∂x2
= ∂α,βt w1(x, t)− k

∂2w1(x, t)

∂x2

−
[
∂α,βt w0(x, t)− k

∂2w0(x, t)

∂x2

]
≤ f(x, t, w0)− [f(x, t, w0]

= 0,

where ρ(0, t) = 0, ρ(L, t) = 0 on Ω and Γ(α)t1−αρ(x, t) |t=0= 0 on ΓT . There-
fore, by Corollary 3.6, it follows that ρ(x, t) ≤ 0 on QT and t1−αw0(x, t) ≤
t1−αw1(x, t) on QT .

Assume that wk(x, t) ≤ wk−1(x, t). To show that wk+1(x, t) ≤ wk(x, t). Let
ρ(x, t) = wk+1(x, t)− wk(x, t). Then

∂α,βt ρ(x, t)− k∂
2ρ(x, t)

∂x2
= ∂α,βt wk+1(x, t)− k

∂2wk+1(x, t)

∂x2

−
[
∂α,βt wk(x, t)− k

∂2wk(x, t)

∂x2

]
≤ f(x, t, wk)− [f(x, t, wk+1)]

≤M(wk − wk+1)

≤ −Mρ(x, t),

where ρ(0, t) = 0, ρ(L, t) = 0 on Ω and Γ(α)t1−αρ(x, t) |t=0= 0 on ΓT . There-
fore, by Corollary 3.6, it follows that ρ(x, t) ≤ 0 on QT and t1−αwk+1(x, t) ≤
t1−αvk(x, t) on QT . Hence by mathematical induction, we have

t1−αwn ≤ t1−αwn−1 ≤ ... ≤ t1−αwk+1 ≤ t1−αwk ≤ ... ≤ t1−αw1 ≤ t1−αw0. (4.4)

Then, we prove that v1(x, t) ≤ w1(x, t). Let ρ(x, t) = v1(x, t)−w1(x, t). Then
from hypothesis, we get
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∂α,βt ρ(x, t)− k∂
2ρ(x, t)

∂x2
= ∂α,βt v1(x, t)− k

∂2v1(x, t)

∂x2

−
[
∂α,βt w1(x, t)− k

∂2w1(x, t)

∂x2

]
≤ f(x, t, v1)− [f(x, t, w1]

≤M(v1 − w1)

≤ −Mρ(x, t),

where ρ(0, t) = 0, ρ(L, t) = 0 on Ω and Γ(α)t1−αρ(x, t) |t=0= 0 on ΓT . There-
fore, by Corollary 3.6, it follows that ρ(x, t) ≤ 0 on QT and t1−αv1(x, t) ≤
t1−αw1(x, t) on QT . Hence,

t1−αv0(x, t) ≤ t1−αv1(x, t) ≤ t1−αw1(x, t) ≤ t1−αw0(x, t)

on QT . By mathematical induction and equations (4.3), (4.4) we have

t1−αv0 ≤ ... ≤ t1−αvn ≤ t1−αwn ≤ ... ≤ t1−αw0

on QT for all n.
Furthermore, if t1−αv0 ≤ t1−αu ≤ t1−αw0 on QT , then for any u(x, t) of

(3.3), we establish the following inequality by the method of induction.

t1−αv0 ≤ ... ≤ t1−αvn ≤ t1−αu ≤ t1−αwn ≤ ... ≤ t1−αw0 (4.5)

on QT for all n. It is certainly true for n = 0, by hypothesis. Assume the
inequality (4.3) to be true for n = k, that is,

t1−αv0 ≤ ... ≤ t1−αvk ≤ t1−αu ≤ t1−αwk ≤ ... ≤ t1−αw0 (4.6)

on QT for all n.
Let ρ(x, t) = vk+1(x, t)− u(x, t). Then from hypothesis, we get

∂α,βt ρ(x, t)− k∂
2ρ(x, t)

∂x2
= ∂α,βt vk+1(x, t)− k

∂2vk+1(x, t)

∂x2

−
[
∂α,βt u(x, t)− k∂

2u(x, t)

∂x2

]
≥ f(x, t, vk+1)− [f(x, t, u)]

≥ −M(vk+1 − u)

≥ −Mρ(x, t),

where ρ(0, t) = 0, ρ(L, t) = 0 on Ω and Γ(α)t1−αρ(x, t) |t=0= 0 on ΓT .
Therefore, by Corollary 3.6, it follows that ρ(x, t) ≥ 0 on QT . Therefore,
t1−αvk+1(x, t) ≤ t1−αu(x, t) on QT .

Similarly, we can show that t1−αu(x, t) ≤ t1−αwk+1(x, t) on QT .
Let ρ(x, t) = u(x, t)− wk+1(x, t). Then from hypothesis, we get
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∂α,βt ρ(x, t)− k∂
2ρ(x, t)

∂x2
= ∂α,βt u(x, t)− k∂

2u(x, t)

∂x2

−
[
∂α,βt wk+1(x, t)− k

∂2wk+1(x, t)

∂x2

]
≥ f(x, t, u)− [f(x, t, wk+1)]

≥ −M(u− wk+1)

≥ −Mρ(x, t),

where ρ(0, t) = 0, ρ(L, t) = 0 on Ω and Γ(α)t1−αρ(x, t) |t=0= 0 on ΓT .
Therefore, by Corollary 3.6, it follows that ρ(x, t) ≥ 0 on QT . Therefore,
t1−αu(x, t) ≤ t1−αwk+1(x, t) on QT .

Hence we constructed the monotone sequence {vn(x, t)}, {wn(x, t)} of lower
and upper solutions of integral representation of linear problem.

Now, we show that the sequences
{
t1−αvn(x, t)

}
and

{
t1−αwn(x, t)

}
are

uniformly bounded and equicontinuous. Using the Ascoli-Arzela theorem,
we obtain subsequences of

{
t1−αvn(x, t)

}
and

{
t1−αwn(x, t)

}
which converge

uniformly and monotonically on QT . Since the sequences
{
t1−αvn(x, t)

}
and{

t1−αwn(x, t)
}

are monotone, the entire sequence
{
t1−αvn(x, t)

}
and

{
t1−αwn(x, t)

}
converges to t1−αρ(x, t) and t1−αγ(x, t), respectively. From this it follows that

t1−αv0 ≤ t1−αv1 ≤ ... ≤ t1−αvn ≤ ... ≤ t1−αρ ≤ t1−αu
≤ t1−αγ ≤ ... ≤ t1−αwn ≤ ... ≤ t1−αw0 on QT .

Consequently, ρ(x, t) and γ(x, t) are minimal and maximal solutions of (3.3)
since

t1−αv0 ≤ t1−αρ ≤ t1−αu ≤ t1−αγ ≤ t1−αw0 on QT .

We prove the uniqueness of the solution of (3.3)in the following. �

Theorem 4.2. Let all the assumptions of Theorem 4.1 hold. Further, let
f(x, t, u) satisfy the one sided Lipschitz condition

f(x, t, u)− f(x, t, u∗) ≤M(u− u∗), M > 0.

Then the solution u(x, t) of (3.3) exists and is unique.

Proof. We have already proved (ρ, γ) are minimal and maximal solutions of
(3.3) on QT . Hence, it is enough to show that γ(x, t) ≤ ρ(x, t) on QT .
It is known from Theorem 4.1 that γ(x, t) ≤ ρ(x, t) on QT . Let p(x, t) =
γ(x, t)− ρ(x, t). By the hypothesis, we get
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∂α,βt p(x, t)− k∂
2p(x, t)

∂x2
= ∂α,βt γ(x, t)− k∂

2γ(x, t)

∂x2

−
[
∂α,βt ρ(x, t)− k∂

2ρ(x, t)

∂x2

]
≤ f(x, t, γ(x, t))− [f(x, t, ρ(x, t))]

≤M | γ(x, t)− ρ(x, t) |
≤M | p(x, t) |,

where p(0, t) = 0, p(L, t) = 0 on Ω and Γ(α)t1−αp(x, t) |t=0= 0 on ΓT .
Therefore, by Corollary 3.6, it follows that p(x, t) ≤ 0. This proves that
γ(x, t) = ρ(x, t) = u(x, t) on QT and proof is complete. �

5. Conclusion

In this work, initially we have investigated the solutions of nonlinear Hilfer
fractional reaction-diffusion equations of IBVP (1.1)-(1.2) using maximal prin-
ciple and comparison theorem on QT . By applying the comparison result as a
tool, we have developed a monotone method for the nonlinear Hilfer fractional
reaction-diffusion equations of IBVP (1.1)-(1.2). The monotone method yields
monotone sequences which converge uniformly and monotonically to minimal
and maximal solutions of IBVP (1.1)-(1.2). We have proved that the unique-
ness solution of u(x, t) of the problem.
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