Browse > Article
http://dx.doi.org/10.12941/jksiam.2014.18.027

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION  

Lee, Hyun Geun (INSTITUTE OF MATHEMATICAL SCIENCES, EWHA WOMANS UNIVERSITY)
Lee, June-Yub (DEPARTMENT OF MATHEMATICS, EWHA WOMANS UNIVERSITY)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.18, no.1, 2014 , pp. 27-41 More about this Journal
Abstract
In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.
Keywords
Modified vector-valued Allen-Cahn equation; Multiphase-field model; Multiphase image segmentation; Operator splitting method; Multigrid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Juric and G. Tryggvason, A front-tracking method for dendritic solidification, Journal of Computational Physics, 123 (1996), 127-148.   DOI   ScienceOn
2 D. Stafford, M. J. Ward and B. Wetton, The dynamics of drops and attached interfaces for the constrained Allen-Cahn equation, European Journal of Applied Mathematics, 12 (2001), 1-24.
3 A. E. Lobkovsky and J. A.Warren, Phase-field model of crystal grains, Journal of Crystal Growth, 225 (2001), 282-288.   DOI
4 S. Chen, B. Merriman, S. Osher and P. Smereka, A simple level set method for solving Stefan problems, Journal of Computational Physics, 135 (1997), 8-29.   DOI   ScienceOn
5 L.-L. Wang and Y. Gu, Efficient dual algorithms for image segmentation using TV-Allen-Cahn type models, Communications in Computational Physics, 9 (2011), 859-877.   DOI
6 Z. Xu, H. Huang, X. Li and P. Meakin, Phase field and level set methods for modeling solute precipitation and/or dissolution, Computer Physics Communications, 183 (2012), 15-19.   DOI
7 J.-W. Choi, H. G. Lee, D. Jeong and J. Kim, An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Physica A, 388 (2009), 1791-1803.   DOI
8 Y. Li, H. G. Lee, D. Jeong and J. Kim, An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation, Computers and Mathematics with Applications, 60 (2010), 1591-1606.   DOI
9 Y. Li and J. Kim, Multiphase image segmentation using a phase-field model, Computers & Mathematics with Applications, 62 (2011), 737-745.   DOI
10 H. Garcke, B. Nestler and B. Stoth, On anisotropic order parameter models for multi-phase systems and their sharp interface limits, Physica D, 115 (1998), 87-108.   DOI
11 H. Garcke, B. Nestler and B. Stinner, A diffuse interface model for alloys with multiple components and phases, SIAM Journal on Applied Mathematics, 64 (2004), 775-799.   DOI
12 R. Kornhuber and R. Krause, Robust multigrid methods for vector-valued Allen-Cahn equations with logarithmic free energy, Computing and Visualization in Science, 9 (2006), 103-116.   DOI
13 H. Garcke and V. Styles, Bi-directional diffusion induced grain boundary motion with triple junctions, Interfaces and Free Boundaries, 6 (2004), 271-294.
14 B. Nestler, H. Garcke and B. Stinner, Multicomponent alloy solidification: Phase-field modeling and simulations, Physical Review E, 71 (2005), 041609.   DOI
15 D. A. Kay and A. Tomasi, Color image segmentation by the vector-valued Allen-Cahn phase-field model: a multigrid solution, IEEE Transactions on Image Processing, 18 (2009), 2330-2339.   DOI
16 L. Vanherpe, F. Wendler, B. Nestler and S. Vandewalle, A multigrid solver for phase field simulation of microstructure evolution, Mathematics and Computers in Simulation, 80 (2010), 1438-1448.   DOI
17 H. G. Lee and J. Kim, An efficient and accurate numerical algorithm for the vector-valued Allen-Cahn equations, Computer Physics Communications, 183 (2012), 2107-2115.   DOI
18 L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, International Journal of Computer Vision, 50 (2002), 271-293.   DOI   ScienceOn
19 J. Lie, M. Lysaker and X.-C. Tai, A variant of the level set method and applications to image segmentation, Mathematics of computation, 75 (2006), 1155-1174.   DOI
20 C. Samson, L. Blanc-Feraud, G. Aubert and J. Zerubia, A level set model for image classification, International Journal of Computer Vision, 40 (2000), 187-197.   DOI
21 D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, 42 (1989), 577-685.   DOI
22 Y. M. Jung, S. H. Kang and J. Shen, Multiphase image segmentation via Modica-Mortola phase transition, SIAM Journal on Applied Mathematics, 67 (2007), 1213-1232.   DOI
23 W. L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, PA, 1987.
24 S. C. Zhu and A. Yuille, Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (1996), 884-900.   DOI   ScienceOn
25 M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, 1 (1988), 321-331.   DOI   ScienceOn
26 N. Paragios and R. Deriche, Geodesic active regions for supervised texture segmentation, The Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu, Greece 1999.
27 T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266-277.   DOI   ScienceOn
28 M. Cheng and J. A. Warren, An efficient algorithm for solving the phase field crystal model, Journal of Computational Physics, 227 (2008), 6241-6248.   DOI
29 A. A. Wheeler, W. J. Boettinger and G. B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Physical Review A, 45 (1992), 7424-7439.   DOI   ScienceOn
30 S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.   DOI   ScienceOn
31 Y. Li, H. G. Lee and J. Kim, A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth, Journal of Crystal Growth, 321 (2011), 176-182.   DOI
32 Y. Li, D. Lee, H. G. Lee, D. Jeong, C. Lee, D. Yang and J. Kim, A robust and accurate phase-field simulation of snow crystal growth, Journal of the Korean Society for Industrial and Applied Mathematics, 16 (2012), 15-29.   과학기술학회마을   DOI
33 M. T. Lusk, A phase-field paradigm for grain growth and recrystallization, Proceedings of the Royal Society of London A, 455 (1999), 677-700.   DOI
34 L.-Q. Chen and W. Yang, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Physical Review B, 50 (1994), 15752-15756.   DOI   ScienceOn
35 D. Fan, C. Geng and L.-Q. Chen, Computer simulation of topological evolution in 2-D grain growth using a continuum diffuse-interface field model, Acta Materialia, 45 (1997), 1115-1126.   DOI
36 J. A. Dobrosotskaya and A. L. Bertozzi, A wavelet-Laplace variational technique for image deconvolution and inpainting, IEEE Transactions on Image Processing, 17 (2008), 657-663.   DOI
37 R. Kobayashi, J. A.Warren andW. C. Carter, A continuum model of grain boundaries, Physica D, 140 (2000), 141-150.   DOI
38 M. Benes, V. Chalupecky and K. Mikula, Geometrical image segmentation by the Allen-Cahn equation, Applied Numerical Mathematics, 51 (2004), 187-205.   DOI
39 L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Communications on Pure and Applied Mathematics, 45 (1992), 1097-1123.   DOI
40 T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, Journal of Differential Geometry, 38 (1993), 417-461.   DOI
41 M. Katsoulakis, G. T. Kossioris and F. Reitich, Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, The Journal of Geometric Analysis, 5 (1995), 255-279.   DOI
42 T. Ohtsuka, Motion of interfaces by an Allen-Cahn type equation with multiple-well potentials, Asymptotic Analysis, 56 (2008), 87-123.
43 L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations, Computer Physics Communications, 108 (1998), 147-158.   DOI   ScienceOn
44 M. Benes and K. Mikula, Simulation of anisotropic motion by mean curvature-comparison of phase-field and sharp-interface approaches, Acta Mathematica Universitatis Comenianae, 67 (1998), 17-42.
45 X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numerische Mathematik, 94 (2003), 33-65.   DOI   ScienceOn
46 X. Yang, J. J. Feng, C. Liu and J. Shen, Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, Journal of Computational Physics, 218 (2006), 417-428.   DOI   ScienceOn
47 Q. Du, C. Liu and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, Journal of Computational Physics, 198 (2004), 450-468.   DOI
48 J. A. Sethian and J. Strain, Crystal growth and dendritic solidification, Journal of Computational Physics, 98 (1992), 231-253.   DOI
49 S. Li, J. S. Lowengrub and P. H. Leo, Nonlinear morphological control of growing crystals, Physica D, 208 (2005), 209-219.   DOI
50 D. Li, R. Li and P. Zhang, A cellular automaton technique for modelling of a binary dendritic growth with convection, Applied Mathematical Modelling, 31 (2007), 971-982.   DOI
51 N. Moelans, B. Blanpain and P. Wollants, A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles, Acta Materialia, 53 (2005), 1771-1781.   DOI
52 I. Steinbach, F. Pezzolla, B. Nestler, M. SeeSSelberg, R. Prieler, G. J. Schmitz and J. L. L. Rezende, A phase field concept for multiphase systems, Physica D, 94 (1996), 135-147.   DOI
53 H. Yin and S. D. Felicelli, A cellular automaton model for dendrite growth in magnesium alloy AZ91, Modelling and Simulation in Materials Science and Engineering, 17 (2009), 075011.   DOI
54 B. Nestler and A. A. Wheeler, Phase-field modeling of multi-phase solidification, Computer Physics Communications, 147 (2002), 230-233.   DOI
55 U. Trottenberg, C. Oosterlee and A. Schuller, Multigrid, Academic Press, London, 2001.