FINITE DIFFERENCE SCHEMES FOR A GENERALIZED NONLINEAR CALCIUM DIFFUSION EQUATION

  • Choo, S.M. (School of Electrical Engineering, University of Ulsan)
  • Published : 2009.09.30

Abstract

Finite difference schemes are considered for a nonlinear $Ca^{2+}$ diffusion equations with stationary and mobile buffers. The scheme inherits mass conservation as for the classical solution. Stability and $L^{\infty}$ error estimates of approximate solutions for the corresponding schemes are obtained. using the extended Lax-Richtmyer equivalence theorem.

Keywords

References

  1. N. L. Allbritton, T. Meyer and L. Stryer, Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate, Science. 258(1992), 1812-1815. https://doi.org/10.1126/science.1465619
  2. V. E. Bondarenko, G. P. Szigeti, G. C. Bett, S. J. Kim and R. L. Rasmusson, Computer model of action potential of mouse ventricular myocytes, Am J Physiol Heart Circ Physiol. 287(2004), H1378-403. https://doi.org/10.1152/ajpheart.00185.2003
  3. S. M. Choo and S. K. Chung, A conservative nonlinear difference scheme for the viscous Cahn-Hilliard equation, J. Appl. Math. Comput. 16(2004), 53-68. https://doi.org/10.1007/BF02936150
  4. S. M. Choo, S. K. Chung and Y. J. Lee, Error estimates of nonstandard finite difference schemes for generalized Cahn-Hilliard and Kuramoto-Sivashinsky equations, J. Korean Math. Soc. 41(2005), 1121-1136.
  5. M. Falcke, Buffers and oscillations in intracellular Ca2+ dynamics, Biophys J. 84(2003), 28-41. https://doi.org/10.1016/S0006-3495(03)74830-9
  6. J. L. Greenstein and R. L. Winslow, An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release, Biophys J. 83(2002), 2918-2945. https://doi.org/10.1016/S0006-3495(02)75301-0
  7. T. J. Hund and Y. Rudy, Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model, Circulation. 110(2004), 3168-3174. https://doi.org/10.1161/01.CIR.0000147231.69595.D3
  8. M. S. Jafri, J. J. Rice and R. L. Winslow, Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load, Biophys J. 74(1998), 1149-1168. https://doi.org/10.1016/S0006-3495(98)77832-4
  9. J. C. Lopez-Marcos and J. M. Sanz-Serna, Stability and convergence in numerical analysis III: Linear investigation of nonlinear stability, IMA J. Numer. Anal. 8(1988), 71-84. https://doi.org/10.1093/imanum/8.1.71
  10. A. Michailova, F. DelPrincipe, M. Egger and E. Niggli, Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum, Biophys J. 83(2002), 3134-3151. https://doi.org/10.1016/S0006-3495(02)75317-4
  11. R. E. Milner, K. S. Famulski and M. Michalak, Calcium binding proteins in the sarcoplasmic/ endoplasmic reticulum of muscle and nonmuscle cells, Mol Cell Biochem. 112(1992), 1-13.
  12. D. E. Strier, A. C. Ventura and S. P. Dawson, Saltatory and continuous calcium waves and the rapid buffering approximation, Biophys J. 85(2003), 3575-3586. https://doi.org/10.1016/S0006-3495(03)74776-6
  13. J. Wagner and J. Keizer, Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations, Biophys J. 67(1994), 447-456. https://doi.org/10.1016/S0006-3495(94)80500-4