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FINITE DIFFERENCE SCHEMES FOR A GENERALIZED
CALCIUM DIFFUSION EQUATION

Sangmok Choo∗ and Namyong Lee

Abstract. Finite difference schemes are considered for a Ca2+ diffu-
sion equations with damping and convection terms, which describe Ca2+

buffering by using stationary and mobile buffers. Stability and L∞ er-
ror estimates of approximate solutions for the corresponding schemes are
obtained using the extended Lax-Richtmyer equivalence theorem.

1. Introduction

Consider the Ca2+ diffusion equation in cells

∂[Ca2+]
∂t

= DCa
∂2[Ca2+]

∂x2
− k+

s [Ca2+][Bs] + k−
s [CaBs] − k+

m[Ca2+][Bm]

+ k−
m[CaBm] − αCa[Ca2+] − βCa

∂[Ca2+]
∂x

,

∂[Bm]
∂t

= DBm

∂2[Bm]
∂x2

− k+
m[Ca2+][Bm] + k−

m[CaBm]

− αBm [Bm] − βBm

∂[Bm]
∂x

,

∂[CaBm]
∂t

= DCaBm

∂2[CaBm]
∂x2

+ k+
m[Ca2+][Bm] − k−

m[CaBm]

− αCaBm [CaBm] − βCaBm

∂[CaBm]
∂x

,

∂[CaBs]
∂t

= k+
s [Ca2+][Bs] − k−

s [CaBs],

[Bs] = [Bs]tot − [CaBs], x ∈ Ω = (0, ℓ), 0 < t ≤ T

(1)

with initial conditions

(2)
(x, 0) = [Ca2+]0(x), [Bm](x, 0) = [Bm]0(x),

[CaBm](x, 0) = [CaBm]0(x), [CaBs](x, 0) = [CaBs]0(x)
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and boundary conditions

(3)
∂u

∂x
(x, t) = 0, x ∈ {0, ℓ}, t ∈ (0, T ]

where αi, βi(i = Ca,Bm, CaBm, CaBs), [Ca2+], [Bs], [Bm], [CaBi] are damp-
ing term, convection term, concentrations of free Calcium ion, stationary and
mobile buffers, and Ca2+ bounded to a buffer site ([1], [11]), respectively, and
u is [Ca2+],[Bm], [CaBm] or [CaBs]. The total concentration of the stationary
buffer [Bs]tot is constant, and D, k+, k− are diffusion, association, and dissoci-
ation constants, respectively and all constants are positive.

Studies on Calcium dynamics belong to the area of electrophysiology, in
which almost all systems are described by ordinary differential equations ([2],
[6]–[8]]) but recently some systems are modeled by partial differential equations
having temporal and spatial terms ([5], [10], [12]). In the case of αi = βi =
0, Wagner and Keizer [13] have described the Ca2+ buffering as the partial
differential equations (1)–(3) without explicit initial and boundary conditions.
There is no numerical analysis of the equations with damping and convection
terms. Following the finite difference approaches in [3]–[4], we can analysis
numerical schemes for the generalized Ca2+ buffering model.

In this paper, we consider estimates of approximate solutions for finite dif-
ference methods. In Section 2, we introduce the finite difference schemes for
(1)–(3) and some lemmas necessary to obtain error estimates. In Section 3, we
briefly recall the Lax-Richtmyer equivalence theorem [9] and obtain stability
and error estimates for the equation by following the approaches in [3]–[4].

2. Finite difference schemes

Let h = ℓ/M be the uniform step size in the spatial direction for a positive
integer M and Ωh = {xi = ih|i = −1, 0, · · · ,M,M+ 1}. Let k = T/N denote
the uniform step size in the temporal direction for a positive integer N . Denote
V n

i = V (xi, tn) for tn = nk, n = 0, 1, · · · , N. For a function V n defined on Ωh,
define the difference operators as for 0 ≤ i ≤ M,

∇+V n
i =

(
V n

i+1 − V n
i

)
/h, ∇−V n

i = ∇+V n
i−1, ∇2V n

i = ∇+(∇−V n
i ).

Further, define operators V n+ 1
2 and ∂tV

n as

V
n+ 1

2
i =

(
V n+1

i + V n
i

)
/2 and ∂tV

n
i =

(
V n+1

i − V n
i

)
/k.
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Then the approximate solutions [C]n+1
i , [M ]n+1

i , [CM ]n+1
i , [CS]n+1

i (0 ≤ i ≤
M, 0 ≤ n ≤ N − 1) for (1)–(3) are defined as solutions of

∂t[C]ni = D1∇2[C]
n+ 1

2
i − k+

s [C]
n+ 1

2
i [S]

n+ 1
2

i + k−
s [CS]

n+ 1
2

i

− k+
m[C]

n+ 1
2

i [M ]
n+ 1

2
i + k−

m[CM ]
n+ 1

2
i − α1[C]

n+ 1
2

i − β1∇̄[C]
n+ 1

2
i ,

∂t[M ]ni = D2∇2[M ]
n+ 1

2
i − k+

m[C]
n+ 1

2
i [M ]

n+ 1
2

i + k−
m[CM ]

n+ 1
2

i

− α2[M ]
n+ 1

2
i − β2∇̄[M ]

n+ 1
2

i ,

∂t[CM ]ni = D3∇2[CM ]
n+ 1

2
i + k+

m[C]
n+ 1

2
i [M ]

n+ 1
2

i − k−
m[CM ]

n+ 1
2

i

− α3[CM ]
n+ 1

2
i − β3∇̄[CM ]

n+ 1
2

i ,

∂t[CS]ni = k+
s [C]

n+ 1
2

i [S]
n+ 1

2
i − k−

s [CS]
n+ 1

2
i ,

[S]ni = [Bs]tot − [CS]ni

(4)

with the initial conditions

(5)
[C]0i = [Ca2+]0(xi), [M ]0i = [Bm]0(xi),

[CM ]0i = [CaBm]0(xi), [CS]0i = [CaBs]0(xi)

and the Neumann boundary conditions

(6)
∇+ + ∇−

2
Un

i = 0, U ∈ {[C], [M ], [CM ], [CS]}, i ∈ {0,M}, 1 ≤ n ≤ N

where ∇̄ = (∇− + ∇+)/2, D1 = DCa, D2 = DBm , D3 = DCaBm , α1 = αCa,
β1 = βCa, α2 = αBm

, β2 = βBm
, and α3 = αCaBm

, β3 = βCaBm
.

Note that the discretized Neumann boundary conditions (6) are equal to
Un
−1 = Un

1 and Un
M+1 = Un

M−1.
In order to consider the error estimates, we now introduce the discrete L2-

inner product and the corresponding discrete L2-norm on Ωh

(V,W )h = h

M∑′′

i=0

ViWi = h
{
(V0W0 + VMWM)/2 +

M−1∑
i=1

ViWi

}
,

∥V ∥h = (V, V )1/2
h

for functions V and W satisfying the boundary condition (6). For the maximum
norm, we define

∥V ∥∞ = max
0≤i≤M

|Vi|.

Hereafter, whenever there is no confusion, (·, ·) and ∥ · ∥ will denote (·, ·)h and
∥ · ∥h, respectively.

It follows from summation by parts and the definition of difference operators
that Lemma 1 holds.

Lemma 1. For functions V and W defined on Ωh and satisfying the boundary
condition (6), the following identity and inequality hold.
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(1) (∇2V,W ) = −h
∑M

i=1(∇−Vi)(∇−Wi).
(2) max{∥∇+V ∥2, ∥∇−V ∥2} ≤ −2(∇2V, V ).

Using Lemma 2.5 in [4] and Lemma 1, we obtain the following lemma.

Lemma 2. For V defined on Ωh, the following inequalities hold.

∥V ∥2
∞ ≤ 3∥V ∥2 + 8∥V ∥∥∇̄V ∥.

3. Convergence of approximate solution

We recall the extension of Lax-Richtmyer equivalence theorem in Lopez-
Marcos and Sanz-Serna [9] which makes us avoid the difficulty of direct proof
for convergence arising specially in nonlinear problems. Let u be a solution of
a problem Φ(u) = 0 and uh be a discrete evaluation of u on Ωh. Let Uh be an
approximate solution of u, which is obtained by solving the discrete equation

(7) Φh(Uh) = 0,

where Φh : Xh → Yh is a continuous mapping and Xh,Yh are normed spaces
having the same dimension. The scheme (7) is said to be convergent if (7) has
a solution Uh such that limh→0 ∥Uh −uh∥Xh

= 0. The discretization (7) is said
to be consistent if limh→0 ∥Φh(uh)∥Yh

= 0. The scheme (7) is said to be stable
in the threshold Rh if there exists a positive constant Θ such that for an open
ball B(uh, Rh) ⊂ Xh,

∥Vh − Wh∥Xh
≤ Θ∥Φh(Vh) − Φh(Wh)∥Yh

, ∀ Vh,Wh ∈ B(uh, Rh).

The following theorem is the extended Lax-Richtmyer equivalence theorem
which gives existence and convergence of approximate solutions. For the proof,
see [9].

Theorem 1. Assume that the discrete equation (7) is consistent and stable in
the threshold Rh. If Φh is continuous in B(uh, Rh) and ∥Φh(uh)∥Yh

= o(Rh)
as h → 0, then (7) has a unique solution Uh in B(uh, Rh) and there exists a
constant Θ such that

∥Uh − uh∥Xh
≤ Θ∥Φh(uh)∥Yh

.

According to Theorem 1, we have only to show that (7) is consistent and
stable in the threshold in order to show the unique existence and convergence
of approximate solutions.

Let Zn
h be the set of all functions defined on Ωh satisfying the discretized

Neumann boundary condition (6) at time level n (0 ≤ n ≤ N). We take
Xh = Yh =

(∏N
n=0 Zn

h

)4 and define a mapping Φh : Xh → Yh by Φh(U) = Ũ,
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where for n = 0, · · · , N − 1

[̃U1]n+1
i = ∂t[U1]ni − D1∇2[U1]

n+ 1
2

i + k+
s [U1]

n+ 1
2

i

(
[Bs]tot − [U4]

n+ 1
2

i

)
− k−

s [U4]
n+ 1

2
i + k+

m[U1]
n+ 1

2
i [U2]

n+ 1
2

i − k−
m[U3]

n+ 1
2

i

+ α1[U1]
n+ 1

2
i + β1∇̄[U1]

n+ 1
2

i ,

[̃U2]n+1
i = ∂t[U2]ni − D2∇2[U2]

n+ 1
2

i + k+
m[U1]

n+ 1
2

i [U2]
n+ 1

2
i − k−

m[U3]
n+ 1

2
i

+ α2[U2]
n+ 1

2
i + β2∇̄[U2]

n+ 1
2

i ,

[̃U3]n+1
i = ∂t[U3]ni − D3∇2[U3]

n+ 1
2

i − k+
m[U1]

n+ 1
2

i [U2]
n+ 1

2
i + k−

m[U3]
n+ 1

2
i

+ α3[U3]
n+ 1

2
i + β3∇̄[U3]

n+ 1
2

i ,

[̃U4]n+1
i = ∂t[U4]ni − k+

s [U1]
n+ 1

2
i

(
[Bs]tot − [U4]

n+ 1
2

i

)
+ k−

s [U4]
n+ 1

2
i

(8)

and

(9)
[̃U1]0i = [U1]

0
i − [Ca2+]0(xi), [̃U2]0i = [U2]

0
i − [Bm]0(xi),

[̃U3]0i = [U3]
0
i − [CaBm]0(xi), [̃U4]0i = [U4]

0
i − [CaBs]0(xi).

We take norms ∥ · ∥Xh
and ∥ · ∥Yh

on Xh and Yh, respectively, such that

∥U∥2
Xh

= max
0≤n≤N

4∑
j=1

∥Un
j ∥2 + k

N−1∑
n=0

{
−

3∑
j=1

(
∇2U

n+ 1
2

j , U
n+ 1

2
j

)
+

4∑
j=1

∥Un+ 1
2

j ∥2

}
and

∥Ũ∥2
Yh

=
4∑

j=1

∥Ũ0
j ∥2 + k

N∑
n=1

4∑
j=1

∥Ũn
j ∥2.

The consistency of the scheme (4)–(6) is obtained using Taylor’s Theorem
and the Mean Value Theorem.

Theorem 2. Let u =
(
[Ca2+], [Bm], [CaBm], [CaBs]

)
be the solution of (1)–

(3) with bounded derivatives ∂3uj

∂t3 and ∂4uj

∂x4 (1 ≤ j ≤ 4). Then there exists a
constant Θ such that

∥Φh(uh)∥Yh
≤ Θ(k2 + h2).

We now consider the stability of the approximate solution in the threshold
Rh.

Theorem 3. Let Φh(U) = Ũ, Φh(V) = Ṽ and B(uh, Rh) be the ball with
center uh and radius Rh = O(1). Assume that the conditions in Theorem 2
hold. Then there exists a constant Θ such that for any U and V in B(uh, Rh),

∥U − V∥Xh
≤ Θ∥Φh(U) − Φh(V)∥Yh

.
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Proof. Let en
j = [Uj ]n−[Vj ]n and K̃n

j = [̃Uj ]n− [̃Vj ]n with 1 ≤ j ≤ 4. Replacing

[Uj ]n and [̃Uj ]n in (8) by [Vj ]n and [̃Vj ]n, respectively, and subtracting these
results from (8), we obtain

∂te
n
1 − D1∇2e

n+ 1
2

1 + (k+
s [Bs]tot + α1)e

n+ 1
2

1

= k+
s

(
e
n+ 1

2
1 [U4]n+ 1

2 + [U1]n+ 1
2 e

n+ 1
2

4

)
+ k−

s e
n+ 1

2
4 + k−

me
n+ 1

2
3

− k+
m

(
e
n+ 1

2
1 [U2]n+ 1

2 + [U1]n+ 1
2 e

n+ 1
2

2

)
+ β1∇̄e

n+ 1
2

1 + K̃n+1
1

∂te
n
2 − D2∇2e

n+ 1
2

2 + α2e
n+ 1

2
2

= −k+
m

(
e
n+ 1

2
1 [U2]n+ 1

2 + [U1]n+ 1
2 e

n+ 1
2

2

)
+ k−

me
n+ 1

2
3

+ β2∇̄e
n+ 1

2
2 + K̃n+1

2 ,

∂te
n
3 − D3∇2e

n+ 1
2

3 + (k−
m + α3)e

n+ 1
2

3

= k+
m

(
e
n+ 1

2
1 [U2]n+ 1

2 + [U1]n+ 1
2 e

n+ 1
2

2

)
+ β3∇̄e

n+ 1
2

3 + K̃n+1
3 ,

∂te
n
4 + k−

s e
n+ 1

2
4 = k+

s [Bs]tote
n+ 1

2
1 − k+

s

(
e
n+ 1

2
1 [U4]n+ 1

2 + [U1]n+ 1
2 e

n+ 1
2

4

)
+ K̃n+1

4 .

(10)

Taking inner products between (10) and e
n+ 1

2
j and summing these results,

we obtain for some constant Θ
4∑

j=1

∂t∥en
j ∥2 −

3∑
j=1

Dj(∇2e
n+ 1

2
j , e

n+ 1
2

j ) +
4∑

j=1

τj∥e
n+ 1

2
j ∥2

≤ Θ
(
∥en+ 1

2
3 ∥ +

3∑
j=1

∥∇̄e
n+ 1

2
j ∥ +

∑
j∈{1,2,4}

∥en+ 1
2

j ∥∞
) 4∑

j=1

∥en+ 1
2

j ∥

+
4∑

j=1

∥K̃n+1
j ∥2

(11)

where τ1 = k+
s [Bs]tot + α1, τ2 = α2, τ3 = k−

m + α3 and τ4 = k−
s .

Applying Lemma 1–2 and the discrete Gronwall’s inequality to (11), we obtain
for 0 ≤ m ≤ N − 1,

4∑
j=1

∥em+1
j ∥2 + k

m∑
n=0

{
−

3∑
j=1

(∇2e
n+ 1

2
j , e

n+ 1
2

j ) +
4∑

j=1

∥en+ 1
2

j ∥2

}

≤ Θ
4∑

j=1

(
∥e0

j∥2 + k

m+1∑
n=1

∥K̃n
j ∥2

)
.

Since
e0
j = U0

j − V 0
j = Ũ0

j − Ṽ 0
j = K̃0

j ,
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the desired result is obtained. ¤

It follows from Theorem 1 that for k = O(hα) and α > 0,

(12)
∥Φh(uh)∥Yh

Rh
= O(k2 + h2) → 0 as h → 0.

Hence, applying Theorems 2–3 and (12) to Theorem 1, we obtain the following
error estimate for (4)–(6).

Theorem 4. Suppose that hypotheses of Theorem 3 hold. Let U= ([C],[M ],[CM ],
[CS]) be a solution of (4)–(6). Then for k = O(hα) and α > 0, there exists a
constant Θ such that

∥U − uh∥Xh
≤ Θ(k2 + h2).
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