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FINITE DIFFERENCE SCHEMES FOR A GENERALIZED
NONLINEAR CALCIUM DIFFUSION EQUATION

S.M. CHoO

ABSTRACT. TFinite difference schemes are considered for a nonlinear Ca?t dif-
fusion equations with stationary and mobile buffers. The scheme inherits mass
conservation as for the classical solution. Stability and L error estimates of
approximate solutions for the corresponding schemes are obtained. using the
extended Lax-Richtmyer equivalence theorem.
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1. Introduction

Consider the generalized nonlinear Ca?t diffusion equation in cells
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[B,] = [Bsltot — [CaB,], z€Q=(0,L),0<t<T

= k}[Ca?t)[Bs] — k7 [CaBy),

with the initial conditions

[Ca®*](2,0) = [Ca®Mo(z), [Bml(=,0) = [Bmlo(x), (2)
[CaBy,)(x,0) = [CaBp)o(x), [CaB)(z,0)= [CaBlo(z)

and the boundary conditions for u € {[Ca?"],[Bn], [CaBmn]},

%(w,t):O, ze{0,L},te (0,T] (3)

where o, 5;(i = Ca, By, CaB,,, CaBy), [Ca?t], [Bs], [Bm], [CaBs],[CaBy,] are
damping term, convection term, concentrations of free Calcium ion, station-
ary and mobile buffers, and Ca?* bounded to stationary and mobile buffer
sites([1],[11]), respectively. The diffusion coeflicients F, G, H are dependent on
concentrations of free Calcium ion and buffers. The total concentration of the
stationary buffer [ Bt is constant, and kT, k_ are association, and dissociation
constants, respectively and all constants are positive.

Studies on Calcium dynamics belong to the area of electrophysiology, in which
almost all systems are described by ordinary differential equations([2],[6]-[8]])
but recently some systems are modeled by partial differential equations having
temporal and spatial terms([5],{10],[12]). In the case of oy = B; = 0, Wag-
ner and Keizer[13] have described the Ca?T buffering as the partial differential
equations {1)—(4) with constants F, G and H. There is no numerical analysis of
equations with nonlinear Ca?* diffusion coefficients. Following the finite differ-
ence approaches in [3]-[4], we can analysis numerical schemes for the generalized
nonlinear Ca?* buffering model.

In this paper, we consider estimates of approximate solutions for finite dif-
ference methods. In Section 2, we introduce the finite difference schemes for
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(1)-(4), which has the property of mass conservation as for the classical solution
with zero damping and convection terms. Some lemmas are necessary to obtain
error estimates. In Section 3, we briefly recall the Lax-Richtmyer equivalence
theorem[9] and obtain stability and error estimates for the equation.

2. Finite difference schemes

Let h = L/M be the uniform step size in the spatial direction for a positive
integer M and Qy, = {a:l =ihli=-1,0,--- , M, M+ 1}. Let k = T'/N denote
the uniform step size in the temporal direction for a positive integer N. Denote
Vi = V(x;,t,) for t, = nk,n =0,1,---, N. For a function V" defined on Q,
define the difference operators as for 0 < 7 < M,

ViV = (Vi = V) /h VoVP = VIV, VIV =V (VYY)
Further, define operators V"% and V™ as

V;n+% - (Vin+1 + szn)/2 and 8t‘/zn _ (‘/Z_n+1 o Vln)/k‘
Then the approximate solutions [Uy |4, o] 2+ (U], U470 < i < M, 0 <
n < N —1) for (1)—(3) are defined as solutions of
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- 2kr_n[U3]?+% — Olg[Ug)]?Jr% _ 53{7[1]3]?+%,
U = KT S ko
[S]? = [Bsltor — [Ual}

Y

with the initial conditions

[U1]7 = [Ca®Flo(xi),  [U2)) = [Bmlo(@s), (5)
[Us]} = [CaBmlo(z:), [Us]] = [CaBslo(x:)

and the Neumann boundary conditions

V. +V_

U =0, j=123, i=0M,1<n<N 6)
2 K
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where V = (V_ + VJr)/Z,1 a1 = QCa, ﬁ11 = ﬁCal, oz = QB,,, B2 = BB, a3 =
ACaByy B3 = Boab,, Fay * = F([Ul]vﬁﬁ, [U2]77+E [Us]nﬁ), and

ur
11 1
Fart = (v-F) v AR (V+F )v+[U1]”+2
1 1 1 1 41
Gij,Hij,ngz and Hij are defined as for FIZ 2 and ]-'n+2.
Note that the discretized Neumann boundary conditions (6) are equal to
[U;]%1 = [U]} and Uilkes1 = [Ujlj—q for j =1,2,3.
In order to consider the error estimates, we now introduce the discrete L2-
inner product and the corresponding discrete L2-norm on Qp

M-=1
(VWh_hZ ViW; ‘h{(VOWO—FVMWM EY VW}
1=0 =1
Viin = (v, V),/>.

For the maximum norm, we define ||V] = max [Vi|.
0<i<M

Hereafter, whenever there is no confusion, (-,-) and || - || will denote (-, -)5 and
Il - |, respectively.

It follows from summation by parts and the definition of difference operators
that Lemma 1 holds.
Lemma 1. For functions V and W defined on ), and satisfying the boundary
conditions (6), the following identity and inequality hold.

M
(1) (V2V,W) = ~hz V_V)(V_W,).

(2) max {|IV4 VP, vy <2V,
Using Lemma 2.5 in [4] and Lemma 1, we obtain the following lemma.

Lemma 2. For V defined on Qy, the following inequality holds.
IVIZ < 3IV|2 +8|V|[[IVV].

For the classical solution of (1)—(3) with zero damping and convection terms,
we obtain

d [E
p [Ca®t] + [B) + [CaBy] + [CaB,)dz = / ( E; )dac =0
where D = F,[E]; = [Ca*"]|,D2 = G,[E]2 = [Bm],Dg = H,and [E]3 = [CaBp,].
Using the definitions of V_,V,V? and boundary conditions (6), we can also
show that the scheme (4)-(6) has the property of mass conservation.
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Theorem 1. Let U; be the solution of (4)-(6) with a; = 3; = 0(1 < j < 4,1<
i < 3). Then the conservation of mass holds. That is, for 1 <n < N,

M// 4 M// 4
Ry YOI =hd > Ul
i=0 j=1 i=0 j=1

3. Convergence of approximate solution

We recall the extension of Lax-Richtmyer equivalence theorem in Lopez-
Marcos and Sanz-Serna[9] which makes us avoid the difficulty of direct proof
for convergence arising specially in nonlinear problems. Let u be a solution of
a problem ®(u) = 0 and uy, be a discrete evaluation of u on Q. Let Uy be an
approximate solution of u, which is obtained by solving the discrete equation

@,(Uy) =0, (7

where @ : X}, — Y}, is a continuous mapping and X, Y}, are normed spaces

having the same dimension. The scheme (7) is said to be convergent if (7) has

a solution U}, such that }llim |Un — unl|x, = 0. The discretization (7) is said
—0

to be consistent if }llin(l] |®n(ur)l|y, = 0. The scheme (7) is said to be stable

in the threshold R}, if there exists a constant C such that for an open ball
B(up, Rp) C X,

Vi = Whlix, < Cll®a(Va) = @h(Wh)llv,, V Vi, Wh € B(un, Ry).

The following theorem is the extended Lax-Richtmyer equivalence theorem

which gives existence and convergence of approximate solutions. For the proof,
see [9].

Theorem 2. Assume that the discrete equation (7) is consistent and stable in
the threshold Ry,. Let B(uy, R}p) be the ball with center uy, and radius Ry. If
®y, is continuous in B(ug, Ry) and || @4 (up)lly, = o(Rp) as h — 0, then (7) has
a unique solution Uy, in B(uy, Ry,) and there exists a constant C such that

1Uh —unllx, < Ol®n(un)y,-

According to Theorem 2, we have only to show that (7) is consistent and
stable in the threshold in order to show the unique existence and convergence of
approximate solutions.

Let Z}' be the set of all functions defined on Q, and Zﬁ be the subset of
Zy satistying the discretized Neumann boundary conditions (6) at time level
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N 3 N
n (0 < n < N). We take X;, = Y, = (H Z}?) X (H Zﬁ) and define a
n=0 n=0

mapping @y, : X, — Yy, by &,(U) = U, where for n=0,--- , N —1

T = Uy - FLTevR(uy e - Fite (8)
+ KO (1Bulion — OaF) kU
RSO U kU] 4 e ORI

[Ta]2 L = AUa]? — G, te — g

+ RO D) — k[0S anlUB]ITR 4+ VDR,
[Cal+! = aUs]y — HIPEV2[Us)fF — it s

— ok [P E g 2k 1Us)! T | a[Us] +ﬂ3V[U3]"+2
U]y = a7 - kF 0] ([ ([ sJeot — [Ual; " ) N UARE

and
Ui¢ = [U3]; - [Ca®* o), [Ua)¢ = U]} — [Bumlo(:), (9)
[Us]¢ = [Us]{ = [CaBulo(es), [Ua]? = (U]} — [CaBiJo(w:).
We take norms | - ||x, and || - ||y, on X; and Y}, respectively, such that
N-1 3 4
[Ulf, = max Z||U"||2 Y {— SV U SR
= i=1 J=1
and

0%, = Z 1717 + kZZ 171

n=1j=1

The consistency of the scheme (4)—(6) is obtained using Taylor’s Theorem
and the Mean Value Theorem.

Theorem 3. Let u = ([Ca®t], [Bn), [CaBy,], [CaBs|) be the solution of (1)—(3)

82
with bounded derivatives oy, “(1<i<3) 3;24

F,G and H are C3(R*)-functions. Then there exists a constant C such that

331' 84
;ﬁ (1<i<4)

[ @)l < O+ 1?).

We now consider the stability of the approximate solution in the threshold
Ry,.
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Theorem 4. Let &,(U) = U, ®,(V) = V and Rj, — O(k%”lhl“Z) with
positive constants £1 and f5. Assume that the conditions in Theorem 3 hold and

the diffusion coefficients are bounded below by a positive constant Dg. Then
there exists a constant C such that for any U and V in B(up, Ry),

U= Vx, <C[®,(U) - 4(V)lly,.

Proof. Let e} = [U;]" — [V;]™ and Iz';” = [rﬁj]“ - (‘73]" with 1 < j < 4. Replacing

[U;]™ and [U;]™ in (8) by [V;]™ and [V;]", respectively, and subtracting these
results from (8), we obtain

Ope — F[}+%v2e?+% + (kF[Bylior + ar)e™t? 10)
= *(FF% ol %)Vz[%]"% 4o ;L+%
N CAR A
— k) ( MQ[UZ] 41
Bpelt — GLTEV2ITE | et
T (Gzh ~Gy 5) V2V 4 gn T gt
—km ( . [Ua]" 2+ [U]" " 2e ) tke "+z
_;_52@6’2”7 +R—g+1’
ey — e 3V2el T3 4 (20 + ag)el T
- <H{j+% - H;H%) V2Vt 1T e

1 _ T~
+ 2k ( nte (U] 4%+ [Ul]"+%€n+2> +BVes 2+ K3,

1
Ot +kyey d K Bel ™ -k (LU o))
+ KT
It follows from the definition of || - ||x, that for V in the ball B(up, Ry),

||V2[ ]n+1/2H < HV2 ( ]n+1/2 n+1/2> { I HV2 n+1/2H a1

fl/2+6 p1+ts .

_— 1 e2

sC Li/zp +C <Ok h™ +1),

JVAIE + IV VA2 + 9 ]2 (12)
<O (KT R2H2) [y |2 + Va2 + |9y

< ok ).
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Note that from Lemma 2 and (11)-(12),

3
nti 1
A SN VAR EYeh ] ey N\ e I
j=1

3
<ot n 1 )Y (e 2 Ie )+ e
j=1

2 3
Dy n
+Z ke]hé2+1 Z{ 7’L+1/2||2 (v2 +1/2,e;l+l/2)}.
Jj=1 =1

Similarly to (13), we obtain

H "*2 n+2

3
oy {ignre- R ARGTARGT D

nt3

Taking inner products between (10) and e; * and summing these results

(13)—(14), we obtain for a constant C

4
+3 n+d +3
Zatne"uQ Z ©(Vre ) 4 Y ey (15)
j=1

j=1

n+ +3 +3 n+g
< C | lles ZII+ZHV6" M D el ZII |

j=1 je{1,2,4}
4 —
+ ) K
=1

where 71 = k}[Bstor + 01,72 = 2,73 =k, + a3z and 74 = k.
Applying Lemma 1-2 and the discrete Gronwall’s inequality to (15), we obtain
for0<m<N -1,

4 m 3
lee;"“||2+k2{—2(v2e§+2 nts +ZII "+2||2}
m+1
cZ(né’n? Y ||K"||2)

Since
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the desired result is obtained. [l

. . 1 1—4
It follows from Theorem 1 that for k = O(h®) with = + T & ,
5—4 3 +64
[@n(un)lly, _ k* + h? N \
Ry =0 i ) 0 as h—0. (16)

Hence, applying Theorems 3—4 and (16) to Theorem 2, we obtain the following
error estimate for (4)—(6).

Theorem 5. Suppose that hypotheses of Theorem 4 hold. Let U= ([U1],[Us],[Us],

144 1—-4
[U4]) be the solution of (4)-(6). Then for k = O(h%) with 3 t 421 <a<g n ;1 ,
2 2

there exists a constant C such that

U — unllx, <CKk*+h?).
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