• Title/Summary/Keyword: Non-Volatile memory

Search Result 271, Processing Time 0.028 seconds

Charge retention characteristics of silicon nanocrystals embedded in $SiN_x$ layer for non-volatile memory devices (비휘발성 메모리를 위한 실리콘 나노 결정립을 가지는 실리콘 질화막의 전하 유지 특성)

  • Koo, Hyun-Mo;Huh, Chul;Sung, Gun-Yong;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.101-101
    • /
    • 2007
  • We fabricated floating gate non-volatile memory devices with Si nanocrystals embedded in $SiN_x$ layer to achieve higher trap density. The average size of Si nanocrystals embedded in $SiN_x$ layer was ranging from 3 nm to 5 nm. The MOS capacitor and MOSFET devices with Si nanocrystals embedded in $SiN_x$ layer were analyzed the charging effects as a function of Si nanocrystals size.

  • PDF

Accelerating Memory Access with Address Phase Skipping in LPDDR2-NVM

  • Park, Jaehyun;Shin, Donghwa;Chang, Naehyuck;Lee, Hyung Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.741-749
    • /
    • 2014
  • Low power double data rate 2 non-volatile memory (LPDDR2-NVM) has been deemed the standard interface to connect non-volatile memory devices such as phase-change memory (PCM) directly to the main memory bus. However, most of the previous literature does not consider or overlook this standard interface. In this paper, we propose address phase skipping by reforming the way of interfacing with LPDDR2-NVM. To verify effectiveness and functionality, we also develop a system-level prototype that includes our customized LPDDR2-NVM controller and commercial PCM devices. Extensive simulations and measurements demonstrate up to a 3.6% memory access time reduction for commercial PCM devices and a 31.7% reduction with optimistic parameters of the PCM research prototypes in industries.

Non volatile memory device using mobile proton in gate insulator by hydrogen neutral beam treatment

  • Yun, Jang-Won;Jang, Jin-Nyeong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.192.1-192.1
    • /
    • 2015
  • We demonstrated the nonvolatile memory functionality of nano-crystalline silicon (nc-Si) and InGaZnOxide (IGZO) thin film transistors (TFTs) using mobile protons that are generated by very short time hydrogen neutral beam (H-NB) treatment in gate insulator (SiO2). The whole memory fabrication process kept under $50^{\circ}C$ (except SiO2 deposition process; $300^{\circ}C$). These devices exhibited reproducible hysteresis, reversible switching, and nonvolatile memory behaviors in comparison with those of the conventional FET devices. We also executed hydrogen treatment in order to figure out the difference of mobile proton generation between PECVD and H-NB CVD that we modified. Our study will further provide a vision of creating memory functionality and incorporating proton-based storage elements onto a probability of next generation flexible memorable electronics such as low power consumption flexible display panel.

  • PDF

Technology of the next generation low power memory system

  • Cho, Doosan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.6-11
    • /
    • 2018
  • As embedded memory technology evolves, the traditional Static Random Access Memory (SRAM) technology has reached the end of development. For deepening the manufacturing process technology, the next generation memory technology is highly required because of the exponentially increasing leakage current of SRAM. Non-volatile memories such as STT-MRAM (Spin Torque Transfer Magnetic Random Access Memory), PCM (Phase Change Memory) are good candidates for replacing SRAM technology in embedded memory systems. They have many advanced characteristics in the perspective of power consumption, leakage power, size (density) and latency. Nonetheless, nonvolatile memories have two major problems that hinder their use it the next-generation memory. First, the lifetime of the nonvolatile memory cell is limited by the number of write operations. Next, the write operation consumes more latency and power than the same size of the read operation.These disadvantages can be solved using the compiler. The disadvantage of non-volatile memory is in write operations. Therefore, when the compiler decides the layout of the data, it is solved by optimizing the write operation to allocate a lot of data to the SRAM. This study provides insights into how these compiler and architectural designs can be developed.

MRAM Technology for High Density Memory Application

  • Kim, Chang-Shuk;Jang, In-Woo;Lee, Kye-Nam;Lee, Seaung-Suk;Park, Sung-Hyung;Park, Gun-Sook;Ban, Geun-Do;Park, Young-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.185-196
    • /
    • 2002
  • MRAM(magnetic random access memory) is a promising candidate for a universal memory with non-volatile, fast operation speed and low power consumption. The simplest architecture of MRAM cell is a combination of MTJ(magnetic tunnel junction) as a data storage part and MOS transistor as a data selection part. This article will review the general development status of MRAM and discuss the issues. The key issues of MRAM technology as a future memory candidate are resistance control and low current operation for small enough device size. Switching issues are controllable with a choice of appropriate shape and fine patterning process. The control of fabrication is rather important to realize an actual memory device for MRAM technology.

Non volatile memory TFT using mobile proton in gate dielectric by hydrogen neutral beam treatment

  • Yun, JangWon;Jang, Jin Nyoung;Hong, MunPyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.231-232
    • /
    • 2016
  • We have fabricated the nc-Si, IGZO based nonvolatile memory TFTs using mobile protons, which can be generated by simple hydrogen insertion process via H-NB treatment at room temperature. The TFT devices above exhibited reproducible hysteresis behavior, stable ON/OFF switching, and non-volatile memory characteristics. Also executed hydrogen treatment in order to figure out the difference of mobile proton generation between PECVD and our modified H-NB CVD. The room temperature proton-insertion process can reveal flexible inorganic based all-in-one display panel including driving circuit and memory circuit.

  • PDF

The Electrical and Thermal Properties of Phase Change Memory Cell with Bottom Electrode (하부전극에 따른 상변화 메모리 셀의 전기 및 발열 특성)

  • Jang, Nak-Won;Kim, Hong-Seung;Lee, June-Key;Kim, Do-Heyoung;Mah, Suk-Bum
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.103-104
    • /
    • 2006
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the reset current and temperature profile of PRAM cells with bottom electrode were calculated by the numerical method.

  • PDF

A Study on Direct Cache-to-Cache Transfer for Hybrid Cache Architecture to Reduce Write Operations (쓰기 횟수 감소를 위한 하이브리드 캐시 구조에서의 캐시간 직접 전송 기법에 대한 연구)

  • Juhee Choi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2024
  • Direct cache-to-cache transfer has been studied to reduce the latency and bandwidth consumption related to the shared data in multiprocessor system. Even though these studies lead to meaningful results, they assume that caches consist of SRAM. For example, if the system employs the non-volatile memory, the one of the most important parts to consider is to decrease the number of write operations. This paper proposes a hybrid write avoidance cache coherence protocol that considers the hybrid cache architecture. A new state is added to finely control what is stored in the non-volatile memory area, and experimental results showed that the number of writes was reduced by about 36% compared to the existing schemes.

  • PDF