• 제목/요약/키워드: Nitride Semiconductor

검색결과 213건 처리시간 0.033초

전기자동차 파워모듈용 질화규소 기판의 열기계적 특성 및 열응력 해석에 대한 연구 (A Study of Thermo-Mechanical Behavior and Its Simulation of Silicon Nitride Substrate on EV (Electronic Vehicle)'s Power Module)

  • 서원;정청하;고재웅;김구성
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.149-153
    • /
    • 2019
  • The technology of electronic packaging among semiconductor technologies is evolving as an axis of the market in its own field beyond the simple assembly process of the past. In the field of electronic packaging technology, the packaging of power modules plays an important role for green electric vehicles. In this power module packaging, the thermal reliability is an important factor, and silicon nitride plays an important part of package substrates, Silicon nitride is a compound that is not found in nature and is made by chemical reaction between silicon and nitrogen. In this study, this core material, silicon nitride, was fabricated by reaction bonded silicon nitride. The fabricated silicon nitride was studied for thermo-mechanical properties, and through this, the structure of power module packaging was made using reaction bonded silicon nitride. And the characteristics of stress were evaluated using finite element analysis conditions. Through this, it was confirmed that reaction bonded silicon nitride could replace the silicon nitride as a package substrate.

기가헤르츠 오실레이터를 위한 BN 나노튜브 연구 (A study on a Boron-Nitride Nanotube as a Gigahertz Oscillator)

  • 이준하
    • 반도체디스플레이기술학회지
    • /
    • 제6권1호
    • /
    • pp.27-30
    • /
    • 2007
  • The gigahertz oscillator behavior of double-walled boron-nitride nanotube (BNNT) was investigated by using classical molecular dynamics simulations. The BNNT oscillator characteristics were compared to carbon-nanotube (CNT) and hybrid-C@BNNT oscillators. The results show that the BNNT oscillators are higher than the van der Waals force of the CNT oscillator. Since the frictional effects of BNNT oscillators are higher than that of a CNT oscillator, the damping factors of BNNT and hybrid oscillators are higher than that of a CNT oscillator.

  • PDF

LPCVD 질화막 만을 이용한 새로운 LOCOS 공정에 관한 연구 (Study of a New LOCOS Process Using Only Thin LPCVD Nitride)

  • 김지범;오기영;김달수;주승기;최민성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(I)
    • /
    • pp.429-432
    • /
    • 1987
  • A new LOCOS (Local Oxidation of Silicon) process using a thin nitride film directly deposited on the silicon substrate by LPCVD has been developed in order to reduce the bird's beak length. SEM studies showed that nitride thickness of 50nm can decrease the bird's beak length down to 0.2um with 450nm field oxide. No crystalline defects are observed around the bird's beak after the Wright etch. A 30% improvement in current density was obtained when this new method was applied to MOS transistors (W/L*2.9/20.4) compared to conventional LOCOS process (bird's beak length=0.7um). Other various electrical parameters improved by this new simple LOCOS process are reported in this paper.

  • PDF

ONO Ruptures Caused by ONO Implantation in a SONOS Non-Volatile Memory Device

  • Kim, Sang-Yong;Kim, Il-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권1호
    • /
    • pp.16-19
    • /
    • 2011
  • The oxide-nitride-oxide (ONO) deposition process was added to the beginning of a 0.25 ${\mu}m$ embedded polysiliconoxide-nitride-oxide-silicon (SONOS) process before all of the logic well implantation processes in order to maintain the characteristics of basic CMOS(complementary metal-oxide semiconductor) logic technology. The system subsequently suffered severe ONO rupture failure. The damage was caused by the ONO implantation and was responsible for the ONO rupture failure in the embedded SONOS process. Furthermore, based on the experimental results as well as an implanted ion's energy loss model, processes primarily producing permanent displacement damages responsible for the ONO rupture failure were investigated for the embedded SONOS process.

InGaP/GaAs HBT 적용을 위한 높은 절연강토의$1000{\AA}$ 실리콘 질화막 MIM capacitor제작과 특성 분석 (Analysis of Properties and Fabrication of $1000{\AA}$ silicon nitride MIM capacitor with High Breakdown Electric Field for InGaP/GaAs HBT Application)

  • 소순진;오두석;성호근;송민종;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.693-696
    • /
    • 2004
  • For InGaP/GaAs HBT applications, we have developed characterized MIM capacitors with thin $1000{\AA}$ PECVD silicon nitride which were deposited with $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $300^{\circ}C$ and had the capacitance density of 600 pF/$mm^2$ with the breakdown electric fields of 3073 MV/cm. Three PECVD process parameters were designed to lower the refractive index and then lower the deposition rate of silicon nitride films for the high breakdown electric field. At the PECVD process condition of gas mixing rate (0.92), working pressure (1.3 Torr), RF power (53 W), the AFM Rms value of about $1000{\AA}$ silicon nitride on the bottom metal was the lowest of 0.662 nmand breakdown electric fields were the highest of about 73 MV/cm.

  • PDF

Direct synthesis of Graphene/Boron nitride stacked layer by CVD on Cu foil

  • Moon, Youngwoong;Park, Jonghyun;Park, Sijin;Kim, Hyungjun;Hwang, Chanyong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.344.1-344.1
    • /
    • 2016
  • Recently, graphene has shown great characteristic of electrical conductivity, strength, and elasticity. However, due to edge unstable and metallic properties, it is difficult to use as a semiconductor devices. The solution of such problems has been sought a way to use the boron nitride in a stacked layer structure. By graphene and boron nitride stacked layer structure on silicon substrate, the electron mobility is improved and deteriorated results in semiconductor properties. In this study, to make layered structure, we developed direct synthesis method for graphene on boron nitride. By using Raman technique, the directly stacked layer structure is in good agreement with measurements on each of the attributes.

  • PDF

Comparative investigation of endurance and bias temperature instability characteristics in metal-Al2O3-nitride-oxide-semiconductor (MANOS) and semiconductor-oxide-nitride-oxide-semiconductor (SONOS) charge trap flash memory

  • Kim, Dae Hwan;Park, Sungwook;Seo, Yujeong;Kim, Tae Geun;Kim, Dong Myong;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권4호
    • /
    • pp.449-457
    • /
    • 2012
  • The program/erase (P/E) cyclic endurances including bias temperature instability (BTI) behaviors of Metal-$Al_2O_3$-Nitride-Oxide-Semiconductor (MANOS) memories are investigated in comparison with those of Semiconductor-Oxide-Nitride-Oxide-Semiconductor (SONOS) memories. In terms of BTI behaviors, the SONOS power-law exponent n is ~0.3 independent of the P/E cycle and the temperature in the case of programmed cell, and 0.36~0.66 sensitive to the temperature in case of erased cell. Physical mechanisms are observed with thermally activated $h^*$ diffusion-induced Si/$SiO_2$ interface trap ($N_{IT}$) curing and Poole-Frenkel emission of holes trapped in border trap in the bottom oxide ($N_{OT}$). In terms of the BTI behavior in MANOS memory cells, the power-law exponent is n=0.4~0.9 in the programmed cell and n=0.65~1.2 in the erased cell, which means that the power law is strong function of the number of P/E cycles, not of the temperature. Related mechanism is can be explained by the competition between the cycle-induced degradation of P/E efficiency and the temperature-controlled $h^*$ diffusion followed by $N_{IT}$ passivation.

2층 질하막 MNOS구조의 비휘발성 기억특성에 관한 연구 (A study on the nonvolatile memory characteristics of MNOS structures with double nitride layer)

  • 이형욱
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권8호
    • /
    • pp.789-798
    • /
    • 1996
  • The double nitride layer Metal Nitride Oxide Semiconductor(MNOS) structures were fabricated by variating both gas ratio and nitride thickness, and by duplicating nitride deposited and one nitride layer MNOS structure to improve nonvolatile memory characteristics of MNOS structures by Low Pressure Chemical Vapor Deposition(LPCVD) method. The nonvolatile memory characteristics of write-in, erase, memory retention and degradation of Bias Temperature Stress(BTS) were investigated by the homemade automatic .DELTA. $V_{FB}$ measuring system. In the trap density double nitride layer structures were higher by 0.85*10$^{16}$ $m^{-2}$ than one nitride layer structure, and the AVFB with oxide field was linearly increased. However, one nitride layer structure was linearly increased and saturated above 9.07*10$^{8}$ V/m in oxide field. In the erase behavior, the hole injection from silicon instead of the trapped electron emission was observed, and also it was highly dependent upon the pulse amplitude and the pulse width. In the memory retentivity, double nitrite layer structures were superior to one nitride layer structure, and the decay rate of the trapped electron with increasing temperature was low. At increasing the number on BTS, the variance of AVFB of the double nitride layer structures was smaller than that of one nitride layer structure, and the trapped electron retention rate was high. In this paper, the double nitride layer structures were turned out to be useful in improving the nonvolatile memory characteristics.

  • PDF

Characterization of the Vertical Position of the Trapped Charge in Charge-trap Flash Memory

  • Kim, Seunghyun;Kwon, Dae Woong;Lee, Sang-Ho;Park, Sang-Ku;Kim, Youngmin;Kim, Hyungmin;Kim, Young Goan;Cho, Seongjae;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.167-173
    • /
    • 2017
  • In this paper, the characterization of the vertical position of trapped charges in the charge-trap flash (CTF) memory is performed in the novel CTF memory cell with gate-all-around structure using technology computer-aided design (TCAD) simulation. In the CTF memories, injected charges are not stored in the conductive poly-crystalline silicon layer in the trapping layer such as silicon nitride. Thus, a reliable technique for exactly locating the trapped charges is required for making up an accurate macro-models for CTF memory cells. When a programming operation is performed initially, the injected charges are trapped near the interface between tunneling oxide and trapping nitride layers. However, as the program voltage gets higher and a larger threshold voltage shift is resulted, additional charges are trapped near the blocking oxide interface. Intrinsic properties of nitride including trap density and effective capture cross-sectional area substantially affect the position of charge centroid. By exactly locating the charge centroid from the charge distribution in programmed cells under various operation conditions, the relation between charge centroid and program operation condition is closely investigated.

반도체 ALD 공정에서의 질화규소 증착 수치해석 (Numerical Analysis on Silicon Nitride Deposition onto a Semiconductor Wafer in Atomic Layer Deposition)

  • 송근수;유경훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2032-2037
    • /
    • 2007
  • Numerical analysis was conducted to investigate the atomic layer deposition(ALD) of silicon nitride using silane and ammonia as precursors. The present study simulated the surface reactions for as-deposited $Si_3N_4$ as well as the kinetics for the reactions of $SiH_4$ and $NH_3$on the semiconductor wafer. The present numerical results showed that the ALD process is dependent on the activation constant. It was also shown that the low activation constant leads to the self-limiting reaction required for the ALD process. The inlet and wafer temperatures were 473 K and 823 K, respectively. The system pressure is 2 Torr.

  • PDF