• Title/Summary/Keyword: Ni-silicide

Search Result 141, Processing Time 0.026 seconds

Characterization of Composite Silicide Obtained from NiCo-Alloy Films (코발트/니켈 합금박막으로부터 형성된 복합실리사이드)

  • Song Ohsung;Cheong Seonghwee;Kim Dugjoong
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.846-850
    • /
    • 2004
  • NiCo silicide films have been fabricated from $300{\AA}-thick\;Ni_{1-x}Co_{x}(x=0.1\sim0.9)$ on Si-substrates by varying RTA(rapid thermal annealing) temperatures from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 sec. Sheet resistance, cross-sectional microstructure, and chemical composition evolution were measured by a four point probe, a transmission electron microscope(TEM), and an Auger depth profilemeter, respectively. For silicides of the all composition and temperatures except for $80\%$ of the Ni composition, we observed small sheet resistance of sub- $7\;{\Omega}/sq.,$ which was stable even at $1100^{\circ}C$. We report that our newly proposed NiCo silicides may obtain sub 50 nm-thick films by tunning the nickel composition and silicidation temperature. New NiCo silicides from NiCo-alloys may be more appropriate for sub-0.1${\mu}m$ CMOS process, compared to conventional single phase or stacked composit silicides.

Microstructure Characterization for Nano-thick Nickel Cobalt Composite Silicides from 10 nm-Ni0.5Co0.5 Alloy films (10 nm 두께의 니켈 코발트 합금 박막으로부터 제조된 니켈코발트 복합실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Kim, Sang-Yeob;Kim, Jong-Ryul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.308-317
    • /
    • 2007
  • We fabricated thermally-evaporated 10 nm-Ni/(poly)Si and 10 nm-$Ni_{0.5}Co_{0.5}$/(Poly)Si structures to investigate the microstructure of nickel silicides at the elevated temperatures required lot annealing. Silicides underwent rapid annealing at the temperatures of $600{\sim}1100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope and an Auger depth profilescope were employed for the determination of vortical microstructure and thickness. Nickel silicides with cobalt on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1100^{\circ}C$ and $900^{\circ}C$, respectively, while the conventional nickle monosilicide showed low resistance below $700^{\circ}C$. Through TEM analysis, we confirmed that a uniform, $10{\sim}15 nm$-thick silicide layer formed on the single-crystal silicon substrate for the Co-alloyed case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of $1000^{\circ}C$. Auger depth profile analysis also supports the presence of this mixed microstructure. Our result implies that our newly proposed NiCo-alloy composite silicide process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

IR Absorption Property in NaNo-thick Nickel Cobalt Composite Silicides (나노급 두께의 Ni50Co50 복합 실리사이드의 적외선 흡수 특성 연구)

  • Song, Oh Sung;Kim, Jong Ryul;Choi, Young Youn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.88-96
    • /
    • 2008
  • Thermal evaporated 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films were deposited to examine the energy saving properties of silicides formed by rapid thermal annealing at temperature ranging from 500 to $1,100^{\circ}C$ for 40 seconds. Thermal evaporated 10 nm-Ni/(70 nm-poly)Si films were also deposited as a reference using the same method for depositing the 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films. A four-point probe was used to examine the sheet resistance. Transmission electron microscopy (TEM) and X-ray diffraction XRD were used to determine cross sectional microstructure and phase changes, respectively. UV-VIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were used to examine the near-infrared (NIR) and middle-infrared (MIR) absorbance. TEM analysis confirmed that the uniform nickel-cobalt composite silicide layers approximately 21 to 55 nm in thickness had formed on the single and polycrystalline silicon substrates as well as on the 25 to 100 nm thick nickel silicide layers. In particular, nickel-cobalt composite silicides showed a low sheet resistance, even after rapid annealing at $1,100^{\circ}C$. Nickel-cobalt composite silicide and nickel silicide films on the single silicon substrates showed similar absorbance in the near-IR region, while those on the polycrystalline silicon substrates showed excellent absorbance until the 1,750 nm region. Silicides on polycrystalline substrates showed high absorbance in the middle IR region. Nickel-cobalt composite silicides on the poly-Si substrates annealed at $1,000^{\circ}C$ superior IR absorption on both NIR and MIR region. These results suggest that the newly proposed $Ni_{50}Co_{50}$ composite silicides may be suitable for applications of IR absorption coatings.

Analysis of Dopant dependence in Ni-Silicide for Sub-l00 nm CMOS Technology (100nm 이하 CMOS 소자의 Source/Drain dopant 종류에 따른 Nickel silicide의 특성분석)

  • Bae, Mi-Suk;Kim, Yong-Goo;Ji, Hee-Hwan;Lee, Hun-Jin;Oh, Soon-Young;Yun, Jang-Gn;Park, Sung-Hyung;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.198-201
    • /
    • 2002
  • In this paper, the dependence of Ni-silicide properties such as sheet resistance and cross-sectional profile on the dopants have been characterized. There was little dependence of sheet resistance on the used dopants such as As, P, $BF_{2}$ and $B_{11}$ just after RTP (Rapid Thermal Process). However, the silicide properties showed strong dependence on the dopants when thermal treatment was applied after formation of Ni-silicide. $BF_{2}$ implanted sample shows the best stable property, while $B_{11}$ implanted one was thermally unstable. The main reason of the excellent property of $BF_{2}$ sample is believed to be the retardation of Ni diffusion by the flourine.

  • PDF

Thermal Stability of Ru-inserted Nickel Monosilicides (루테늄 삽입층에 의한 니켈모노실리사이드의 안정화)

  • Yoon, Kijeong;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.159-168
    • /
    • 2008
  • Thermally-evaporated 10 nm-Ni/1 nm-Ru/(30 nm or 70 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Ru-inserted nickel monosilicide. The silicide samples underwent rapid thermal anne aling at $300{\sim}1,100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process were formed on the top of the single crystal and polycrystalline silicon substrates mimicking actives and gates. The sheet resistance was measured using a four-point probe. High resolution X-ray diffraction and Auger depth profiling were used for phase and chemical composition analysis, respectively. Transmission electron microscope and scanning probe microscope(SPM) were used to determine the cross-sectional structure and surface roughness. The silicide, which formed on single crystal silicon and 30 nm polysilicon substrate, could defer the transformation of $Ni_2Si $i and $NiSi_2 $, and was stable at temperatures up to $1,100^{\circ}C$ and $1,100^{\circ}C$, respectively. Regarding microstructure, the nano-size NiSi preferred phase was observed on single crystalline Si substrate, and agglomerate phase was shown on 30 nm-thick polycrystalline Si substrate, respectively. The silicide, formed on 70 nm polysilicon substrate, showed high resistance at temperatures >$700^{\circ}C$ caused by mixed microstructure. Through SPM analysis, we confirmed that the surface roughness increased abruptly on single crystal Si substrate while not changed on polycrystalline substrate. The Ru-inserted nickel monosilicide could maintain a low resistance in wide temperature range and is considered suitable for the nano-thick silicide process.

Ohmic Characteristics of Ni/3C-SiC Interface (Ni/3C-SiC 계면의Ohmic 특성)

  • Kim, In-Hui;Jeong, Jae-Gyeong;Jeong, Jae-Gyeong;Sin, Mu-Hwan
    • Korean Journal of Materials Research
    • /
    • v.7 no.11
    • /
    • pp.1018-1023
    • /
    • 1997
  • 본 연구에서는 3C-SiC의 ohmic 접합에 대하여 그 전기적 특성과 미세구조의 상관관계에 대하여 분석하였다. 표준사진식각 공정을 통하여 ohmic접합 금속으로서 Ni을 진공증착시켜 일련의 TLM패턴으로 열처리에 따르는 전류-전압 특성을 조사하였고 TEM, SEM, AES, EDS를 사용하여 Ni/SiC 계면에 대한 미세구조, 화학적 특성을 분석하였다. 열처리 온도와 시간을 통한 thermal budget이 증가함에 따라서 접촉저항이 감소되었으며 그 값은 $10^{-2}$-$10^{-4}$$\textrm{cm}^2$의 범위에 속하였다. EDS와 AES를 통하여 7$50^{\circ}C$이상의 열처리 후 silicide(NiSi$_{2}$)의 주변에 carbon층이 형성되는 것을 확인하였으며, 열처리 온도가 증가함에 따라서 island형 silicide의 크기가 조밀해지며 SiC와의 접착성이 향상됨을 알 수 있었다. Ni/3C-SiC ohmic 접합의 전기적 특성은 계면에 생성되는 silicide와 carbon의 형성거동에 의하여 결정되는 것으로 믿어진다.

  • PDF

Characteristics of Ni/Co Composite Silicides for Poly-silicon Gates (게이트를 상정한 니켈 코발트 복합실리사이드 박막의 물성연구)

  • Kim, Sang-Yeob;Jung, Young-Soon;Song, Oh-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.149-154
    • /
    • 2005
  • We fabricated Ni/Co(or Co/Ni) composite silicide layers on the non-patterned wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\~}1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the poly silicon inversion due to fast metal diffusion lead to decrease silicide thickness. Our results imply that we should consider the serious inversion and fast transformation in designing and process f3r the nano-height fully cobalt nickel composite silicide gates.

  • PDF

Stress Dependence of Thermal Stability of Nickel Silicide for Nano MOSFETs

  • Zhang, Ying-Ying;Lim, Sung-Kyu;Lee, Won-Jae;Zhong, Zhun;Li, Shi-Guang;Jung, Soon-Yen;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.15-16
    • /
    • 2006
  • The thermal stability of nickel silicide with compressively and tensilely stressed nitride capping layer has been investigated in this study. The Ni (10 nm) and Ni/Co/TiN (7/3/25 nm) structures were deposited on the p-type Si substrate. The stressed capping layer was deposited using plasma enhanced chemical vapor deposition (PECVD) after silicide formation by one-step rapid thermal process (RTP) at $500^{\circ}C$ for 30 sec. It was found that the thermal stability of nickel silicide depends on the stress induced by the nitride capping layer. In the case of Ni (10 nm) structure, the high compressive sample shows the best thermal stability, whereas in the case of Ni/Co/TiN (7/3/25 nm) structure, the high compressive sample shows the worst thermal stability.

  • PDF

Thermal Stability Improvement of Ni-Silicide on the SOI Substrate Doped B11 for Nano-scale CMOSFET (나노급 CMOSFET을 위한 SOI기판에 Doping된 B11을 이용한 Ni-Silicide의 열안정성 개선)

  • Jung, Soon-Yen;Oh, Soon-Young;Kim, Yong-Jin;Lee, Won-Jae;Zhang, Ying-Ying;Zhong, Zhun;Li, Shi-Guang;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.24-25
    • /
    • 2006
  • In this study, Ni silicide on the SOI substrate doped B11 is proposed to improve thermal stability. The sheet resistance of Ni-silicide utilizing pure SOI substrate increased after the post-silicidation annealing at $600^{\circ}C$ for 30 min. However, using the proposed B11 implanted substrate, the sheet resistance showed stable characteristics after the post-silicidation annealing up to $700^{\circ}C$ for 30 min.

  • PDF