• Title/Summary/Keyword: Newton methods

Search Result 252, Processing Time 0.03 seconds

An Improved Fast Decoupled Newton Raphson Load flow Study (전력조류계산의 개선에 관한 연구)

  • 박영문;백영식
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.78-83
    • /
    • 1977
  • The Newton-Raphson method has now gained widespread popularity in Load-flow calculationes. In this paper programming is developed with aims to improve the convergence characteristics, speed and memory requirements in the above method. The method of Load-flow calculations is performed by employing the MW-O/MVAR-V decoupling principle. To reduce the memory requirements and improve the speed of calculation the programming of the Optimally Ordered Triangular Factorization method is developed. Besides this, other measures are taken to reduce memory requirements and computing time and to improve reliability. KECO'S 48 Bus system was tested and the method suggested in this paper was proved to be faster than any other methods.

  • PDF

GLOBAL CONVERGENCE PROPERTIES OF TWO MODIFIED BFGS-TYPE METHODS

  • Guo, Qiang;Liu, Jian-Guo
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.311-319
    • /
    • 2007
  • This article studies a modified BFGS algorithm for solving smooth unconstrained strongly convex minimization problem. The modified BFGS method is based on the new quasi-Newton equation $B_k+1{^s}_k=yk\;where\;y_k^*=yk+A_ks_k\;and\;A_k$ is a matrix. Wei, Li and Qi [WLQ] have proven that the average performance of two of those algorithms is better than that of the classical one. In this paper, we prove the global convergence of these algorithms associated to a general line search rule.

A Study on a Load Flow calculation for Preserved Jacobian Matrix's elements except diagonal terms (Jacobian 행렬의 비 대각 요소를 보존시킬 수 있는 조류계산에 관한 연구)

  • Moon, Yong-Hyun;Lee, Jong-Gi;Choi, Byoung-Kon;Park, Jeong-Do;Ryu, Hun-Su
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.311-315
    • /
    • 1998
  • Load Flow calculation methods can usually be divided into Gauss-Seidel method, Newton-Raphson method and decoupled method. Load flow calculation is a basic on-line or off-line process for power system planning, operation, control and state analysis. These days Newton-Raphson method is mainly used since it shows remarkable convergence characteristics. It, however, needs considerable calculation time in construction and calculation of inverse Jacobian matrix. In addition to that, Newton-Raphson method tends to fail to converge when system loading is heavy and system has a large R/X ratio. In this paper, matrix equation is used to make algebraic expression and then to solve load flow equation and to modify above defects. And it preserve certain part of Jacobian matrix to shorten the time of calculation. Application of mentioned algorithm to 14 bus, 39 bus, 118 bus systems led to identical result and the number of iteration got by Newton-Raphson method. The effect of time reduction showed about 28%, 30%, at each case of 39 bus, 118 bus system.

  • PDF

Comparison of Regularization Techniques For an Inverse Radiation Boundary Analysis (역복사경계해석을 위한 다양한 조정기법 비교)

  • Kim, Ki-Wan;Baek, Seung-Wook
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1288-1293
    • /
    • 2004
  • Inverse radiation problems are solved for estimating the boundary conditions such as temperature distribution and wall emissivity in axisymmetric absorbing, emitting and scattering medium, given the measured incident radiative heat fluxes. Various regularization methods, such as hybrid genetic algorithm, conjugate-gradient method and Newton method, were adopted to solve the inverse problem, while discussing their features in terms of estimation accuracy and computational efficiency. Additionally, we propose a new combined approach of adopting the genetic algorithm as an initial value selector, whereas using the conjugate-gradient method and Newton method to reduce their dependence on the initial value.

  • PDF

Software for application of Newton-Raphson method in estimation of strains in prestressed concrete girders

  • Gocic, Milan;Sadovic, Enis
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.121-133
    • /
    • 2012
  • Structures suffer from damages in their lifetime due to time-dependant effects, such as fatigue, creep and shrinkage, which can be expressed by concrete strains. These processes could be seen in the context of strain estimation of pre-stressed structures in two phases by using numerical methods. Their aim is checking and validating existing code procedures in determination of deformations of pre-tensioned girders by solving a system of nonlinear equations with strains as unknown parameters. This paper presents an approach based on the Newton-Raphson method for obtaining the stresses and strains in middle span section of pre-stressed girders according the equilibrium state.

Comparison of Regularization Techniques for an Inverse Radiation Boundary Analysis (역복사경계해석을 위한 다양한 조정법 비교)

  • Kim, Ki-Wan;Shin, Byeong-Seon;Kil, Jeong-Ki;Yeo, Gwon-Koo;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.903-910
    • /
    • 2005
  • Inverse radiation problems are solved for estimating the boundary conditions such as temperature distribution and wall emissivity in axisymmetric absorbing, emitting and scattering medium, given the measured incident radiative heat fluxes. Various regularization methods, such as hybrid genetic algorithm, conjugate-gradient method and finite-difference Newton method, were adopted to solve the inverse problem, while discussing their features in terms of estimation accuracy and computational efficiency. Additionally, we propose a new combined approach that adopts the hybrid genetic algorithm as an initial value selector and uses the finite-difference Newton method as an optimization procedure.

Sparse Second-Order Cone Programming for 3D Reconstruction

  • Lee, Hyun-Jung;Lee, Sang-Wook;Seo, Yong-Duek
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.103-107
    • /
    • 2009
  • This paper presents how to minimize the second-order cone programming problem occurring in the 3D reconstruction of multiple views. The $L_{\infty}$-norm minimization is done by a series of the minimization of the maximum infeasibility. Since the problem has many inequality constraints, we have to adopt methods of the interior point algorithm, in which the inequalities are sequentially approximated by log-barrier functions. An initial feasible solution is found easily by the construction of the problem. Actual computing is done by an iterative Newton-style update. When we apply the interior point method to the problem of reconstructing the structure and motion, every Newton update requires to solve a very large system of linear equations. We show that the sparse bundle-adjustment technique can be utilized in the same way during the Newton update, and therefore we obtain a very efficient computation.

  • PDF

A Study on Numerical Analysis of Wheel-rail Contact Points (차륜과 레일 접촉위치의 수치해석에 관한 연구)

  • Kang, Ju-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.236-242
    • /
    • 2009
  • This paper presents a numerical analysis method to determine flange contact at variable wheel positions. The shapes of the wheel and rail surface functions with surface parameters. The Newton-Rhapson method for wheel-rail contact can provide fast solutions, but may not yield true values at optimization process with the condition that minimum distance is zero can time-consuming. A compound method, combining the Newton-Rhapson methods the optimization process method is proposed to provide exact solutions efficiently.

ON THE CONVERGENCE OF INEXACT TWO-STEP NEWTON-TYPE METHODS USING RECURRENT FUNCTIONS

  • Argyros, Ioannis K.;Hilou, Said
    • East Asian mathematical journal
    • /
    • v.27 no.3
    • /
    • pp.319-337
    • /
    • 2011
  • We approximate a locally unique solution of a nonlinear equation in a Banach space setting using an inexact two-step Newton-type method. It turn out that under our new idea of recurrent functions, our semilocal analysis provides tighter error bounds than before, and in many interesting cases, weaker sufficient convergence conditions. Applications including the solution of nonlinear Chandrasekhar-type integral equations appearing in radiative transfer and two point boundary value problems are also provided in this study.

ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE METHOD OF ORDER THREE

  • Argyros, Ioannis K.;Hilout, Said
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-27
    • /
    • 2010
  • Wu and Zhao [17] provided a semilocal convergence analysis for a Newton-type method on a Banach space setting following the ideas of Frontini and Sormani [9]-[11]. In this study first: we point out inconsistencies between the hypotheses of Theorem 1 and the two examples given in [17], and then, we provide the proof in affine invariant form for this result. Then, we also establish new convergence results with the following advantages over the ones in [17]: weaker hypotheses, and finer error estimates on the distances involved. A numerical example is also provided to show that our results apply in cases other fail [17].