ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE METHOD OF ORDER THREE

  • Argyros, Ioannis K. (CAMERON UNIVERSITY, DEPARTMENT OF MATHEMATICS SCIENCES) ;
  • Hilout, Said (POITIERS UNIVERSITY, LABORATORIE DE MATHEMATIQUES ET APPLICATIONS)
  • Published : 2010.02.28

Abstract

Wu and Zhao [17] provided a semilocal convergence analysis for a Newton-type method on a Banach space setting following the ideas of Frontini and Sormani [9]-[11]. In this study first: we point out inconsistencies between the hypotheses of Theorem 1 and the two examples given in [17], and then, we provide the proof in affine invariant form for this result. Then, we also establish new convergence results with the following advantages over the ones in [17]: weaker hypotheses, and finer error estimates on the distances involved. A numerical example is also provided to show that our results apply in cases other fail [17].

Keywords

References

  1. Argyros, I.K.: An improved error analysis for Newton-like methods under generalized conditions. J. Comput. Appl. Math. 157 (2003), 169-185. https://doi.org/10.1016/S0377-0427(03)00390-X
  2. Argyros, I.K.: On the comparison of a weak variant of the Newton-Kantorovich and Miranda theorems. J. Comput. Appl. Math. 166 (2004), 585-589. https://doi.org/10.1016/j.cam.2003.10.015
  3. Argyros, I.K.: Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, USA, 2007.
  4. Argyros, I.K. & Chen, D.: The midpoint method for solving nonlinear operator equations in Banach space. Appl. Math. Lett. 5 (1992), 7-9.
  5. Argyros, I.K. & Chen, D.: Results on the Chebyshev method in Banach spaces. Proyecciones 12 (1993), 119-128.
  6. Argyros, I.K. & Chen, D.: The midpoint method in Banach spaces and the Ptak error estimates. Appl. Math. Comput. 62 (1994), 1-15. https://doi.org/10.1016/0096-3003(94)90129-5
  7. Argyros, I.K. & Chen, D.: On the midpoint iterative method for solving nonlinear operator equations in Banach space and its applications in integral equations. Rev. Anal. Numer. Theor. Approx. 23 (1994), 139-152.
  8. Deuflahard, P. & Heindl, G.: Affine invariant convergence theorems for Newton's method and extensions to related methods. SIAM J. Numer. Anal. 16 (1979), 1-10. https://doi.org/10.1137/0716001
  9. Frontini, M. & Sormani, E.: Some variant of Newton's method with third-order convergence. Appl. Math. Comput. 140 (2003), 419-426. https://doi.org/10.1016/S0096-3003(02)00238-2
  10. Frontini, M. & Sormani, E.: Modified Newton's method with third-order convergence and multiple roots. J. Comput. Appl. Math. 156 (2003), 345-354. https://doi.org/10.1016/S0377-0427(02)00920-2
  11. Frontini, M. & Sormani, E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations, Appl. Math. Comput. 149 (2004), 771-782. https://doi.org/10.1016/S0096-3003(03)00178-4
  12. Gutierrez, J.M. & Hernandez, M.A.: An acceleration of Newton's method: super-Halley method. Appl. Math. Comput. 117 (2001), 223-239. https://doi.org/10.1016/S0096-3003(99)00175-7
  13. Hernandez, M.A.: A modification of the classical Kantorovich conditions for Newton's method. J. Comput. Appl. Math. 137 (2001), 201-205. https://doi.org/10.1016/S0377-0427(01)00393-4
  14. Hernandez, M.A. & Salanova, M.A.: Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method. J. Comput. Appl. Math. 126 (2000), 131-143. https://doi.org/10.1016/S0377-0427(99)00347-7
  15. Kantorovich, L.V. & Akilov, G.P.: Functional analysis in normed spaces. Pergamon Press, Oxford, 1982.
  16. Weerakoon, S. & Fernando, T.G.I.: A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), 87-93.
  17. Wu, Q. & Zhao, Y.: Third-order convergence theorem by using majorizing function for a modified Newton method in Banach space. Appl. Math. Comput. 175 (2006), 1515-1524. https://doi.org/10.1016/j.amc.2005.08.043