DOI QR코드

DOI QR Code

ON THE CONVERGENCE OF INEXACT TWO-STEP NEWTON-TYPE METHODS USING RECURRENT FUNCTIONS

  • Argyros, Ioannis K. (Department of Mathematics Sciences Cameron University) ;
  • Hilou, Said (Laboratoire de Mathematiques et Application Poitiers University)
  • Received : 2011.03.02
  • Accepted : 2011.05.04
  • Published : 2011.05.31

Abstract

We approximate a locally unique solution of a nonlinear equation in a Banach space setting using an inexact two-step Newton-type method. It turn out that under our new idea of recurrent functions, our semilocal analysis provides tighter error bounds than before, and in many interesting cases, weaker sufficient convergence conditions. Applications including the solution of nonlinear Chandrasekhar-type integral equations appearing in radiative transfer and two point boundary value problems are also provided in this study.

Keywords

References

  1. Argyros, I.K., On a class of nonlinear integral equations arising in neutron transport, Aequationes Math., 36, (1988), 99-111. https://doi.org/10.1007/BF01837974
  2. Argyros, I.K., A unified approach for constructing fast two-step Newton-like methods, Monatsh. Math., 119, (1995), 1-22. https://doi.org/10.1007/BF01292765
  3. Argyros, I.K., A unified approach for constructing fast two-step methods in Banach space and their applications, PanaAmer. Math. J., 13(3), (2003), 59-108.
  4. Argyros, I.K., A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298, (2004), 374-397. https://doi.org/10.1016/j.jmaa.2004.04.008
  5. Argyros, I.K., A new iterative method of asymptotic order $1+\sqrt{2}$ for the computation of fixed points, Int. J. Comput. Math., 82(11), (2005), 1413-1428. https://doi.org/10.1080/00207160500113546
  6. Argyros, I.K., Convergence and applications of Newton-type iterations, Springer-Verlag, 2008, New York.
  7. Argyros, I.K., On the semilocal convergence of inexact methods in Banach spaces, J. Comput. Appl. Math., 228, (2009), 434-443. https://doi.org/10.1016/j.cam.2008.10.005
  8. Argyros, I.K., A semilocal convergence analysis for directional Newton methods, Math. of Comput., A.M.S, to appear.
  9. Argyros, I.K., Hilout, S., Enclosing roots of polynomial equations and their applications to iterative processes, Surveys Math. Appl., 4, (2009), 119-132.
  10. Argyros, I.K., Hilout, S., Efficient methods for solving equations and variational inequalities, Polimetrica Publisher, Milano, Italy, 2009.
  11. Argyros, I.K., Hilout, S., Inexact Newton methods and recurrent functions, Appl. Math., 37(1), (2010), 113-126.
  12. Argyros, I.K., Hilout, S., A convergence analysis of Newton-like method for singular equations using recurrent functions, Numer. Funct. Anal. Optimiz., 31(2), (2010), 112-130. https://doi.org/10.1080/01932691003672604
  13. Argyros, I.K., Hilout, S., Extending the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math., 234, (2010), 2993-3006. https://doi.org/10.1016/j.cam.2010.04.014
  14. Candela, V., Marquina, A., Recurrence relations for rational cubic methods I: The Halley method, Computing, 44(2), (1990), 169-184. https://doi.org/10.1007/BF02241866
  15. Candela, V., Marquina, A., Recurrence relations for rational cubic methods. II. The Chebyshev method, Computing, 45(4), (1990), 355-367. https://doi.org/10.1007/BF02238803
  16. Chandrasekhar, S., Radiative transfer, Dover Publ., New York, 1960.
  17. Chen, X., Nashed, M.Z., Convergence of Newton-like methods for singular operator equations using outer inverses, Numer. Math., 66, (1993), 235-257. https://doi.org/10.1007/BF01385696
  18. Ezquerro, J.A., Hernandez, M.A., On the R-order of the Halley method, J. Math. Anal. Appl., 303(2), (2005), 591-601. https://doi.org/10.1016/j.jmaa.2004.08.057
  19. Ezquerro, J.A., Hernandez, M.A., Salanova, M. A., A discretization scheme for some conservative problems, Proceedings of the 8th Inter. Congress on Comput. and Appl. Math., ICCAM-98 (Leuven), J. Comput. Appl. Math., 115 (2000), 181-192. https://doi.org/10.1016/S0377-0427(99)00115-6
  20. Ezquerro, J.A., Hernandez, M.A., Salanova, M. A., A Newton-like method for solving some boundary value problems, Numer. Funct. Anal. Optim., 23(7-8), (2002), 791-805. https://doi.org/10.1081/NFA-120016270
  21. Ezquerro, J.A., Hernandez, M.A., Salanova, M. A., Solving a boundary value problem by a Newton-like method, Int. J. Comput. Math., 79(10), (2002), 1113-1120. https://doi.org/10.1080/00207160212710
  22. Ezquerro, J.A., Hernandez, M.A., An optimization of Chebyshev's method, J. Complexity, 25 (2009), 343-361. https://doi.org/10.1016/j.jco.2009.04.001
  23. Gutierrez, J.M., Hernandez, M.A., Recurrence relations for the super-Halley method, Comput. Math. Appl., 36(7), (1998), 1-8. https://doi.org/10.1016/S0898-1221(98)00168-0
  24. Hernandez, M.A., Reduced recurrence relations for the Chebyshev method, J. Optim. Theory Appl., 98(2), (1998), 385-397. https://doi.org/10.1023/A:1022641601991
  25. Hernandez, M.A., Second-derivative-free variant of the Chebyshev method for nonlinear equations, J. Optim. Theory Appl., 104(3), (2000), 501-515. https://doi.org/10.1023/A:1004618223538
  26. Kantorovich, L.V., Akilov, G.P., Functional analysis in normed spaces, Pergamon Press, Oxford, 1982.
  27. Lambert, J.D., Computational methods in ordinary differential equations. Introductory Mathematics for Scientists and Engineers, John Wiley & Sons, London-New York-Sydney, 1973.
  28. Ortega, L.M., Rheinboldt, W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
  29. Parhi, S.K., Gupta, D.K., A third order method for fixed points in Banach spaces, J. Math. Anal. Appl., 359(2), (2009), 642-652. https://doi.org/10.1016/j.jmaa.2009.05.057
  30. Parida, P.K., Gupta, D.K., Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces, J. Math. Anal. Appl., 345(1), (2008), 350-361. https://doi.org/10.1016/j.jmaa.2008.03.064
  31. Proinov, P.D., General local convergence theory for a class of iterative processes and its applications to Newton's method, J. Complexity, 25, (2009), 38-62. https://doi.org/10.1016/j.jco.2008.05.006
  32. Proinov, P.D., New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity, 26, (2010), 3-42. https://doi.org/10.1016/j.jco.2009.05.001
  33. Werner, W., Newton-like method for the computation of fixed points, Comput. Math. Appl., 10(1), (1984), 77-86. https://doi.org/10.1016/0898-1221(84)90088-9